Breaking News

Introducing G-SYNC Ultra Low Motion Blur 2 MediaTek Partners With NVIDIA to Transform Automobiles With AI and Accelerated Computing NVIDIA CEO Unveils Gen AI Platforms for Every Industry QNAP Highlights Smart AI Surveillance Solution and much more at Computex 2023 Days of Play 2023 sale kicks off on June 2

logo

  • Share Us
    • Facebook
    • Twitter
  • Home
  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map

Search form

Intel Says ‘Horse Ridge’ Cryogenic Control Chip Will Enable Commercially Viable Quantum Computers

Intel Says ‘Horse Ridge’ Cryogenic Control Chip Will Enable Commercially Viable Quantum Computers

Enterprise & IT Dec 9,2019 0

Intel Labs today unveiled what is believed to be a first-of-its-kind cryogenic control chip — code-named “Horse Ridge” — designed to speed up development of full-stack quantum computing systems.

Horse Ridge will enable control of multiple quantum bits (qubits) and sets a clear path toward scaling larger systems — a major milestone on the path to quantum practicality. Developed together with Intel’s research collaborators at QuTech, a partnership between TU Delft and TNO (Netherlands Organization for Applied Scientific Research), Horse Ridge is fabricated using Intel’s 22nm FinFET technology.

Jim Clarke, Intel’s director of Quantum Hardware said:

“While there has been a lot of emphasis on the qubits themselves, the ability to control many qubits at the same time had been a challenge for the industry. Intel recognized that quantum controls were an essential piece of the puzzle we needed to solve in order to develop a large-scale commercial quantum system. That’s why we are investing in quantum error correction and controls. With Horse Ridge, Intel has developed a scalable control system that will allow us to significantly speed up testing and realize the potential of quantum computing”

In the race to realize the power and potential of quantum computers, researchers have focused extensively on qubit fabrication, building test chips that demonstrate the exponential power of a small number of qubits operating in superposition. However, in early quantum hardware developments — including design, testing and characterization of Intel’s silicon spin qubit and superconducting qubit systems — Intel identified a major bottleneck toward realizing commercial-scale quantum computing: interconnects and control electronics.

With Horse Ridge, Intel introduces a solution that will enable the company to control multiple qubits and set a clear path toward scaling future systems to larger qubit counts.

Quantum computers promise the potential to tackle problems that conventional computers can’t handle by leveraging a phenomena of quantum physics that allows qubits to exist in multiple states simultaneously. As a result, qubits can conduct a large number of calculations at the same time — dramatically speeding up complex problem-solving.

The quantum research community is still at mile one of a marathon toward demonstrating quantum practicality, a benchmark against which the quantum research community can determine whether a quantum system can deliver game-changing performance to solve real-world problems. Intel´s investment in quantum computing covers the full hardware and software stack in pursuit of the development and commercialization of a practical, commercially viable quantum system.

To date, researchers have been focused on building small-scale quantum systems to demonstrate the potential of quantum devices. In these efforts, researchers have relied on existing electronic tools and high-performance computing rack-scale instruments to connect the quantum system inside the cryogenic refrigerator to the traditional computational devices regulating qubit performance and programming the system.

These devices are often custom-designed to control individual qubits, requiring hundreds of connective wires into and out of the refrigerator in order to control the quantum processor. This extensive control cabling for each qubit will hinder the ability to scale the quantum system to the hundreds or thousands of qubits required to demonstrate quantum practicality, not to mention the millions of qubits required for a commercially viable quantum solution.

With Horse Ridge, Intel simplifies the control electronics required to operate a quantum system. Replacing these bulky instruments with a highly-integrated system-on-chip (SoC) will simplify system design and allow for sophisticated signal processing techniques to accelerate set-up time, improve qubit performance and enable the system to efficiently scale to larger qubit counts.

Horse Ridge is a highly integrated, mixed-signal SoC that brings the qubit controls into the quantum refrigerator — as close as possible to the qubits themselves. It effectively reduces the complexity of quantum control engineering from hundreds of cables running into and out of a refrigerator to a single, unified package operating near the quantum device.

Designed to act as a radio frequency (RF) processor to control the qubits operating in the refrigerator, Horse Ridge is programmed with instructions that correspond to basic qubit operations. It translates those instructions into electromagnetic microwave pulses that can manipulate the state of the qubits.

Named for one of the coldest regions in Oregon, the Horse Ridge control chip was designed to operate at cryogenic temperatures — approximately 4 Kelvin. To put this in context, 4 Kelvin is only warmer than absolute zero — a temperature so cold that atoms nearly stop moving.

This feat is particularly exciting as Intel progresses its research into silicon spin qubits, which have the potential to operate at slightly higher temperatures than current quantum systems require.

Today, a quantum computer operates at in the millikelvin range — just a fraction of a degree above absolute zero. But silicon spin qubits have properties that could allow them to operate at 1 Kelvin or higher temperatures, which would dramatically reduce the challenges of refrigerating the quantum system.

As research progresses, Intel aims to have cryogenic controls and silicon spin qubits operate at the same temperature level. This will enable the company to leverage its expertise in advanced packaging and interconnect technologies to create a solution with the qubits and controls in one streamlined package.

Tags: Quantum computingIntel
Previous Post
NVIDIA Researchers Use AI to Bring Images to Life
Next Post
Organization Identifies Implications of BigTech's Engagement in Financial Data

Related Posts

  • Intel Launches Agilex 7 FPGAs with R-Tile, First FPGA with PCIe 5.0 and CXL Capabilities

  • Intel Dives into the Future of Cooling

  • Intel Foundry and Arm Announce Multigeneration Collaboration on Leading-Edge SoC Design

  • Intel Announces New vPro Platform with 13th Gen Intel Core

  • G.SKILL Announces DDR5-8000 CL38 48GB (24GBx2) Memory Kit

  • Intel Accelerates 5G Leadership with New Products

  • Intel Launches New Xeon W-3400 and Xeon W-2400 Workstation Processors

  • ASUS and ASRock Launches W790 Workstation Motherboards

Latest News

Introducing G-SYNC Ultra Low Motion Blur 2
GPUs

Introducing G-SYNC Ultra Low Motion Blur 2

MediaTek Partners With NVIDIA to Transform Automobiles With AI and Accelerated Computing
Enterprise & IT

MediaTek Partners With NVIDIA to Transform Automobiles With AI and Accelerated Computing

NVIDIA CEO Unveils Gen AI Platforms for Every Industry
Enterprise & IT

NVIDIA CEO Unveils Gen AI Platforms for Every Industry

QNAP Highlights Smart AI Surveillance Solution and much more at Computex 2023
Enterprise & IT

QNAP Highlights Smart AI Surveillance Solution and much more at Computex 2023

Days of Play 2023 sale kicks off on June 2
Gaming

Days of Play 2023 sale kicks off on June 2

Popular Reviews

Pioneer BDR-S13U-X Blu-Ray Recorder

Pioneer BDR-S13U-X Blu-Ray Recorder

EnGenius ECW230S AP

EnGenius ECW230S AP

Pioneer BDR-X13U-S

Pioneer BDR-X13U-S

Pioneer BDR-XD08UMB-S External Blu-Ray Recorder

Pioneer BDR-XD08UMB-S External Blu-Ray Recorder

be quiet! Pure Rock 2 FX

be quiet! Pure Rock 2 FX

be quiet! Pure Loop 2 FX (280mm)

be quiet! Pure Loop 2 FX (280mm)

Creative Zen Hybrid

Creative Zen Hybrid

be quiet! Silent Wings Pro 4

be quiet! Silent Wings Pro 4

Main menu

  • Home
  • News
  • Reviews
  • Essays
  • Forum
  • Legacy
  • About
    • Submit News

    • Contact Us
    • Privacy

    • Promotion
    • Advertise

    • RSS Feed
    • Site Map
  • About
  • Privacy
  • Contact Us
  • Promotional Opportunities @ CdrInfo.com
  • Advertise on out site
  • Submit your News to our site
  • RSS Feed