Saturday, December 16, 2017
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Samsung Galaxy A8, A8 Plus and LG K Series to Appear at CES
North Korea Behind attacks on Cryptocurrency Exchanges: report
BlackBerry Ends Support for Priv, Talks About the Future of BB10
Google to Shut Down Project Tango in March 2018
Facebook Admits Spending Time on Social Media is Bad for You
Facebook Will Start Putting Ads Before Videos
Samsung's Smart Speaker Coming Next Year
Internet Neutrality is Officially Dead
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > Intel D...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, October 10, 2017
Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging


Intel has delivered a 17-qubit superconducting test chip for quantum computing to QuTech, Intel's quantum research partner in the Netherlands.

The new chip was fabricated by Intel and features a unique design to achieve improved yield and performance.

Quantum computing, in essence, is the ultimate in parallel computing, with the potential to tackle problems conventional computers can't handle. For example, quantum computers may simulate nature to advance research in chemistry, materials science and molecular modeling - like helping to create a new catalyst to sequester carbon dioxide, or create a room temperature superconductor or discover new drugs.

However, despite much experimental progress and speculation, there are inherent challenges to building viable, large-scale quantum systems that produce accurate outputs. Making qubits (the building blocks of quantum computing) uniform and stable is one such obstacle.

Qubits are tremendously fragile: Any noise or unintended observation of them can cause data loss. This fragility requires them to operate at about 20 millikelvin - 250 times colder than deep space. This extreme operating environment makes the packaging of qubits key to their performance and function. Intel's Components Research Group (CR) in Oregon and Assembly Test and Technology Development (ATTD) teams in Arizona are pushing the limits of chip design and packaging technology to address quantum computing's unique challenges.

About the size of a quarter (in a package about the size of a half-dollar coin), the new 17-qubit test chip's improved design features include:

  • New architecture allowing improved reliability, thermal performance and reduced radio frequency (RF) interference between qubits.
  • A scalable interconnect scheme that allows for 10 to 100 times more signals into and out of the chip as compared to wirebonded chips.
  • Advanced processes, materials and designs that enable Intel's packaging to scale for quantum integrated circuits, which are much larger than conventional silicon chips.

Intel's collaborative relationship with QuTech to accelerate advancements in quantum computing began in 2015. Since that time, the collaboration has achieved many milestones - from demonstrating key circuit blocks for an integrated cryogenic-CMOS control system to developing a spin qubit fabrication flow on Intel's 300mm process technology and developing this packaging solution for superconducting qubits

"With this test chip, we'll focus on connecting, controlling and measuring multiple, entangled qubits towards an error correction scheme and a logical qubit," said professor Leo DiCarlo of QuTech. "This work will allow us to uncover new insights in quantum computing that will shape the next stage of development."

Intel and QuTech's work in quantum computing goes beyond the development and testing of superconducting qubit devices. The collaboration spans the entire quantum system - or "stack" - from qubit devices to the hardware and software architecture required to control these devices as well as quantum applications. All of these elements are essential to advancing quantum computing from research to reality.

Intel is also investigating multiple qubit types. These include the superconducting qubits incorporated into this newest test chip, and an alternative type called spin qubits in silicon. These spin qubits resemble a single electron transistor similar in many ways to conventional transistors and potentially able to be manufactured with comparable processes.



Previous
Next
AMD, Intel, ARM, IBM and Others Support the Open Neural Network Exchange Format for AI        All News        Malware Spread Through PornHub
AMD, Intel, ARM, IBM and Others Support the Open Neural Network Exchange Format for AI     General Computing News      Malware Spread Through PornHub

Get RSS feed Easy Print E-Mail this Message

Related News
IBM Announces Collaboration With Leading Companies to Accelerate Quantum Computing
Google Opening Artificial Intelligence Research Center in China
Microsoft Releases Preview of Quantum Development Kit, Q Sharp Programming Language
Intel Introduces Cost-optimized Pentium Silver and Intel Celeron Processors
Intel Uses Cobalt Interconnect for 10nm, Global Foundries Detail EUV Lithography for 7nm
IBM Says New POWER9-based AC922 Power Systems Offer 4x Deep-learning Framework Performance Over x86
IBM Scientists Demonstrate 10x Faster Machine Learning Using GPUs
Intel to Unveil Platform For Autonomous Cars at CES
Intel and Warner Partner to Develop In-Cabin Experiences in Autonomous Cars
U.S. Government Warns Businesses About Vulnerabilities Of Management Engine in Intel Chips
Samsung to set up AI Research Center
Samsung Forecast to Top Intel as Larger Semiconductor Supplier in 2017

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2017 - All rights reserved -
Privacy policy - Contact Us .