Thursday, May 24, 2018
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Qualcomm Snapdragon 710 Mobile Platform Brings Artificial Intelligence Features to a New Tier of Smartphones
Intel Nervana NNP-L1000 Neural Network Processor Coming in 2019
Uber Ends Arizona Self-driving Program
Apple to Offer $50 Rebates for iPhone Battery Swaps
Qualcomm Snapdragon XR1 SoC to be Dedicated to VR and AR Headsets
Next@Acer: Acer Debuts Premium Chromebooks, Gaming Desktops and Notebooks
LG Display and Google Develop an 18 megapixel 4.3-inch 1443 ppi 120 Hz OLED display for VR
IBM Crypto-Anchor Verifier, an AI-enabled Scanner for Visual Clues that Prove an Item's Authenticity
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > Hitachi...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, April 13, 2010
Hitachi Technology Doubles The Life of Industrial Lithium-ion Batteries

Hitachi, Ltd. claims that it has developed a new cathode material for industrial lithium-ion batteries using manganese-based cathode materials that roughly doubles the life of similar batteries using the cathode material which was developed by Hitachi in the past.

The newly developed cathode material, made from manganese, a resource in abundant supply, stabilizes the crystal structure by replacing some of the manganese in the cathode material with other elements, and at the same time includes composite oxides with outstanding resistance to acids, to minimize the elution of manganese into the liquid electrolyte. Hitachi has already developed and evaluated prototype cells using the new cathode material, and has confirmed that reductions in battery capacity can be roughly cut in half compared to existing units. Using the new material, Hitachi thus expects to be able to achieve battery life of ten years or more, which is about twice the life of current lithium-ion batteries with manganese-based cathode materials.

Lithium-ion batteries using the newly developed cathode material are expected to be used for electrical power storage in wind power generation and other new energy fields, and as industrial power sources for electric-powered construction machinery designed to reduce greenhouse gas emissions.

These results were achieved as part of an ongoing project contracted by the New Energy and Industrial Technology Development Organization (NEDO) to Hitachi under the title "Development of elemental technologies for power storage systems to achieve smooth utility interactions." The prototype cell was developed in collaboration with Shin-Kobe Electric Machinery Co., Ltd. Lithium-ion batteries are used in a wide range of applications, including mobile phones, laptop PCs, and other consumer products, as well as hybrid automobiles and other vehicle applications. In the future, they are expected to be used as compact storage devices in connection with wind power generation and other power facilities designed to reduce environmental impact. Cobalt is the main cathode material used in lithium-ion batteries for consumer applications, which is currently the largest market for these batteries. The growing popularity of lithium-ion batteries, however, has given rise to concerns regarding the ability to a secure stable supply of cobalt, which is a scarce resource. Hitachi turned its attention to manganese, which is available in abundant supply, as a candidate metal that could replace cobalt as the main cathode material, and has been conducting research and development targeting lithium manganese spinel materials, which have a "spinel structure". The high operating voltage of spinel makes this material suitable for power storage applications, but a number of challenges remained, including the deterioration of battery capacity over numerous charge and discharge cycles. The focus of attention thus turned to improving battery life characteristics.

Hitachi minimized changes in the volume of spinel crystals during charge and discharge by replacing some of the manganese in the lithium manganese spinel with other elements, thereby successfully controlling reductions in battery capacity. Furthermore, the inclusion of layered composite oxides with outstanding acidity resistance reduces the elution of manganese into the liquid electrolyte. It is therefore possible to prevent reductions in battery capacity, which had been a problem in the past, and to increase battery life. Following are the main features of the newly developed technology.

"Gears of War" Trilogy Available Exclusively on Xbox 360 in April 2011        All News        Hitachi Offers New 3D LCD Display For Mobiles
Google Sites Accounted for 65.1 Percent Search Market Share in march     General Computing News      Site Speed Affects Google's Web Search Ranking

Get RSS feed Easy Print E-Mail this Message

Related News
Hitachi and Clarion Develop a Remote Parking System Using Smartphone that Enables Driverless Parking
Hitachi Finger Vein Authentication System Uses A Smartphone Camera
Hitachi Develops New Humanoid Robot
Hitachi and Honda Develop Portable Breath-based Alcohol Detection Device For Car Drivers
Hitachi, Mitsubishi Electric Fined By Europe Over Automotive Parts Cartel Case
Hitachi Wearable Sensor Helps Working Groups Be Happy And Productive
Hitachi Wearable Device Monitors Brain Functions
Hitachi Technology Stores Digital Data In 100 Recording Layers, Data Can be Stored For 300 million Years
Hitachi HDDs Have The Lowest Failure Rate: report
Hitachi Combines SSD Tier And SSD Cache Methods in Tiered Storage Systems
Hitachi Brings New Flash, Unified Storage and Converged Solutions
HGST Launches the 1.5TB Mobile Hard Drive

Most Popular News
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2018 - All rights reserved -
Privacy policy - Contact Us .