Thursday, July 31, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Researchers Discover New Smartphone Flaws
U.S. Government Issues Warning About Malicious Software
Hackers Can Use USB Devices in Attacks
Next Apple TV Release Delayed
CoD: Advanced Warfare Collector's Editions Announced
Lite-On IT Merged With Lite-On
AMD Introduces New Kaveri APUs for System Builders
Toshiba, Samsung Vie For 48-layer 3-D NAND Chips
Active Discussions
help questions structure DVDR
Made video, won't play back easily
Questions durability monitor LCD
Questions fungus CD/DVD Media, Some expert engineer in optical media can help me?
CD, DVD and Blu-ray burning for Android in development
IBM supercharges Power servers with graphics chips
Werner Vogels: four cloud computing trends for 2014
Video editing software.
 Home > News > PC Parts > Panason...
Last 7 Days News : SU MO TU WE TH FR SA All News

Friday, December 18, 2009
Panasonic Starts Mass-Production of High-Capacity 3.1 Ah Lithium-ion Battery For Laptops


Panasonic developed a 18650-type high-capacity 3.1 Ah lithium-ion battery and began mass production of the battery this December.

The new 3.1 Ah battery has a nickel positive electrode and an energy density of 675 Wh/L. The same type (18 mm in diameter x 65 mm in length) of batteries are widely used in laptop computers.

Demand for lithium-ion batteries is growing as a power source for mobile devices such as laptop computers and mobile phones because their high energy density and light weight properties are suitable for these applications. As such devices become more sophisticated and powerful, they require more robust and safer batteries that do not cause abnormal heating.

The company claims that it has successfully achieved safety and high capacity by using its unique Heat Resistance Layer (HRL) technology that forms an insulating metal oxide layer between the positive and negative electrodes. The layer prevents the battery from overheating even if a short circuit occurs.

Capitalizing on this technology, Panasonic commercialized a high-capacity 2.9 Ah lithium-ion battery with a nickel positive electrode (energy density: 620 Wh/L) in 2006. Based on the cell construction with the nickel positive electrode and the HRL, the company added improvements to the battery and succeeded in developing the 3.1 Ah lithium-ion battery, the industry's highest capacity in the 18650-type. This high energy density battery can also contribute to downsizing and weight reduction of portable devices.

"With adoption of the nickel positive electrode, the new rechargeable battery excels in durability in actual use and charge retention - the battery can be stored for a long period of time because of low self-discharge," Panasonic said in a statement.


Previous
Next
ATI Catalyst version 9.12 Released        All News        Pioneer Reaches Agreement With Honeywell
Intel Announces Next-Generation Atom Platform     PC Parts News      WD and NEC Collaborate to Promote SuperSpeed USB 3.0 Standard with New Storage Interface Technology

Get RSS feed Easy Print E-Mail this Message

Related News
Panasonic and Tesla Sign Agreement for the Gigafactory
Panasonic Seeks To Sell Its Mobile Base Station Business to Nokia
Panasonic Updates Toughpad FZ-G1 10-inch Tablet
Intel To Manufacture Future Panasonic SoCs Using Intel's 14nm Low-Power Process
Panasonic Releases Its 2014 Life+Screen AX800 Series 4K Ultra HDTVs
Fujitsu Buys Shares of Panasonic Information Technology Solutions
Panasonic, Samsung Debut Devices For Connected Classrooms
Panasonic Toughpad Line Gets Smaller And Tougher with Rugged Handheld Tablets
Panasonic Weakens Its Research Team
New Panasonic Lumix DMC-FZ1000 Comes With Fast lens And 4K Recording Capability
Toyota, Panasonic Cloud Service Links Cars to Home Appliances
Panasonic to Recall PC Batteries

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .