Thursday, September 03, 2015
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Updated Google Street View App Has 360-degree Images
Samsung Seeks Piece of Nascent Smartwatch Market With New Gear S2 Smartwatch
Ricoh Unveils Upgraded THETA S Spherical Camera
Barnes & Noble and Samsung Unveil New Samsung Galaxy Tab S2 NOOK
Sony Is Entering The Pico Projector Market
Intel Media Server Studio 2016 Enables Faster Video Transcoding and Transition to HEVC and 4K
JBL Expands Aftermarket Subwoofer Line-up, Promises Big Concert Sound From New Portable Bluetooth Speaker
AMD To Showcase Broadcast Ecosystem Workflows at IBC 2015
Active Discussions
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
How to burn a backup copy of The Frozen Throne
Help make DVDInfoPro better with dvdinfomantis!!!
Copied dvd's say blank in computer only
menu making
Optiarc AD-7260S review
 Home > News > Optical Storage > Philips...
Last 7 Days News : SU MO TU WE TH FR SA All News

Monday, October 23, 2006
Philips Achieves 75 GByte of Data on 12cm Disc


Philips Research has announced at ISOM 2006, the International Symposium on Optical Materials conference held this past week in Japan, important new developments involving near-field recording technology.

Philips researchers (C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, F. Zijp (Philips Research Laboratories, Netherlands)) have made significant progress in advancing a new storage technology called near-field optical recording. The Philips Research announcement notes that it has successfully recorded 75GB of data on a 120mm diameter disc, using near-field techniques.

The Near-field optical recording terminology refers to the extremely short distance between the read/write head and the disc surface. The roughly 25-nm gap is directly comparable to the distance between the head and the disk surface in hard-disk assemblies. The technology has been extensively studied over the past years for use in various optical recording applications, because it allows much smaller bits to be recorded. However, numerous technical problems have prevented its use in commercially practical applications. New results from Philips give promise that some of these problems may soon be overcome.

As in the case of Blu-Ray, the fundamental for achieving large storage capacities is to increase the data density recorded on the medium. But the data density of an optical recording medium depends on the focused laser beam spot size, which is limited by diffraction. The beam spot size can be reduced by using a shorter wavelength laser or a larger Numerical Aperture (NA) objective lens. In the case of CD media, we are talking about a 780nm laser and 0.45 NA (0.7GB), for DVD we have 650nm and 0.6 NA (4.7GB) and for the Blu-Ray it is a "blue" 405nm laser, 0.85 NA (25GB).

Philips' approach for high density recording under the near field recording concept uses a 405 nm laser beam, focused by a pair of special lenses that offer a NA of 1.45 (!). Through this, the capacity of a DVD medium can reach 150GB or more, on two layers.

The challenge for Philips engineers was the development of a high NA lens system combined with a low-hovering recording head.

The answer is to use a blue laser to write and read data through a "solid immersion lens" (SIL). This type of optics is already used in microscopes and in lithography equipment for semiconductor production. The SIL uses the different refractive index of glass and air to achieve a high numerical aperture. The SIL optical head is composed of a hemisphere which is made from high refractive index glass and high NA focusing objective lens.

Philips? current experiments has a numerical aperture of 1.45 and a refraction index of 1.58. The track pitch is 210nm (nanometers), and the channel bit-length is 38nm. A spacing layer just three micrometers thick (!) separates the SIL from the recordable or recorded surface of the disc medium. According to Philips, the raw error rate is 6 x 10 to the minus 5th power. By raising the numerical aperture to 1.61, a single layer can accommodate 125GB on a 120mm diameter disc, and as many as four layers can be used to create a single disc capacity of 500GB. The recordable material used in the Philips experiments is based on a CuSi (copper-silicon) inorganic formulation.

After having achieved the high NA, Philips had to make sure that the laser head would be able to accurately hover above the medium surface at distances that were roughly 25nm. A central ingredient of Philips' new technology is a servo that controls the position of the read/write head. For its tests on a Near field recording set-up, Philips mounted the lens in advanced 3D actuators, used for focusing and tracking.

Philips expects to be able to demonstrate two-layer near-field recording capabilities in 2007. Commercialization, however, of this research project is several years away.

Sony has also been active in near-field studies for many years, and its results were first reported at ODS 2004. This report revealed recording densities of 80.6Gbits/square inch and one-layer capacities of about 112GB. Blue lasers were used. The numerical aperture of the Sony SIL was 1.84, and it was separated from the recording surface by a gap of 20nm, with no cover layer employed.


Previous
Next
Researchers Burn BD-Rs at 12x        All News        12x DVD-R DL Recording Specifications Available Next Month
Researchers Burn BD-Rs at 12x     Optical Storage News      12x DVD-R DL Recording Specifications Available Next Month

Get RSS feed Easy Print E-Mail this Message

Related News
Philips Hue Lightstrip Plus Will Paint A Whole Room
IFA: Philips Brings Quantum Dot Monitors to Europe
Philips 27 Full HD Quantum Dot Monitor monitor Promises Perfect RGB Coverage
Philips Hue Go Lets You Take The Light With You
Philips Fidelio NC1L Headphones Go battery-free When Connected to Your iOS Device
TP Vision To Integrate Android into Philips TVs
Philips and Nintendo Resolve Patent Disputes
Philips 272G5DYEB 27-Inch G-SYNC Monitor launching Soon
Philips to Appeal $467 Million Patent Infringement Lawsuit
Philips Expands Its Series Of Ultra HD TVs Powered by Android
New Philips Hue Beyond Combines Functionality And Ambient Lighting for Home
Philips to Create New Lumileds and Automotive Lighting Businesses Company

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .