Turn off the Ad Banner  

To print: Select File and then Print from your browser's menu.

    -----------------------------------------------
This story was printed from CdrInfo.com,
located at http://www.cdrinfo.com.
-----------------------------------------------

Appeared on: Tuesday, October 10, 2017
Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging

Intel has delivered a 17-qubit superconducting test chip for quantum computing to QuTech, Intel's quantum research partner in the Netherlands.

The new chip was fabricated by Intel and features a unique design to achieve improved yield and performance.

Quantum computing, in essence, is the ultimate in parallel computing, with the potential to tackle problems conventional computers can't handle. For example, quantum computers may simulate nature to advance research in chemistry, materials science and molecular modeling - like helping to create a new catalyst to sequester carbon dioxide, or create a room temperature superconductor or discover new drugs.

However, despite much experimental progress and speculation, there are inherent challenges to building viable, large-scale quantum systems that produce accurate outputs. Making qubits (the building blocks of quantum computing) uniform and stable is one such obstacle.

Qubits are tremendously fragile: Any noise or unintended observation of them can cause data loss. This fragility requires them to operate at about 20 millikelvin - 250 times colder than deep space. This extreme operating environment makes the packaging of qubits key to their performance and function. Intel's Components Research Group (CR) in Oregon and Assembly Test and Technology Development (ATTD) teams in Arizona are pushing the limits of chip design and packaging technology to address quantum computing's unique challenges.

About the size of a quarter (in a package about the size of a half-dollar coin), the new 17-qubit test chip's improved design features include:

Intel's collaborative relationship with QuTech to accelerate advancements in quantum computing began in 2015. Since that time, the collaboration has achieved many milestones - from demonstrating key circuit blocks for an integrated cryogenic-CMOS control system to developing a spin qubit fabrication flow on Intel's 300mm process technology and developing this packaging solution for superconducting qubits

"With this test chip, we'll focus on connecting, controlling and measuring multiple, entangled qubits towards an error correction scheme and a logical qubit," said professor Leo DiCarlo of QuTech. "This work will allow us to uncover new insights in quantum computing that will shape the next stage of development."

Intel and QuTech's work in quantum computing goes beyond the development and testing of superconducting qubit devices. The collaboration spans the entire quantum system - or "stack" - from qubit devices to the hardware and software architecture required to control these devices as well as quantum applications. All of these elements are essential to advancing quantum computing from research to reality.

Intel is also investigating multiple qubit types. These include the superconducting qubits incorporated into this newest test chip, and an alternative type called spin qubits in silicon. These spin qubits resemble a single electron transistor similar in many ways to conventional transistors and potentially able to be manufactured with comparable processes.



Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2024 - All rights reserved -
Privacy policy - Contact Us .