Monday, April 21, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Sharp Improves LCD Viewing Angle With New Optical Film
Ex-Apple CEO To Sell Mobiles In India
HTC Hired Ex-Samsung Marketing Officer
Xbox One Wolrdwide Sales Cross 5 million
Samsung Works With GLOBALFOUNDRIES On 14 nm FinFET Offering
Facebook To Find Nearby Friends
Console Sales Lift AMD's First Quarter Results
LG Expands 'Second Screen' TV Ecosystem With Open-Source SDK
Active Discussions
help questions structure DVDR
Made video, won't play back easily
Questions durability monitor LCD
Questions fungus CD/DVD Media, Some expert engineer in optical media can help me?
CD, DVD and Blu-ray burning for Android in development
IBM supercharges Power servers with graphics chips
Werner Vogels: four cloud computing trends for 2014
Video editing software.
 Home > News > General Computing > Scienti...
Last 7 Days News : SU MO TU WE TH FR SA All News

Friday, March 22, 2013
Scientists Discover New Atomic Technique to Charge Memory Chips


IBM today announced a materials science breakthrough at the atomic level that could pave the way for a new class of non-volatile memory and logic chips that would use less power than today?s silicon based devices.

Rather than using conventional electrical means that operate today's semiconducting devices, IBM's scientists discovered a new way to operate chips using tiny ionic currents, which are streams of charged atoms that could mimic the event-driven way in which the human brain operates.

Today's computers typically use semiconductors made with CMOS process technologies and it was long thought that these chips would double in performance and decrease in size and cost every two years. But the materials and techniques to develop and build CMOS chips are rapidly approaching physical and performance limitations and new solutions may soon be needed to develop high performance and low-power devices.

IBM research scientists showed that it is possible to reversibly transform metal oxides between insulating and conductive states by the insertion and removal of oxygen ions driven by electric fields at oxide-liquid interfaces. Once the oxide materials, which are innately insulating, are transformed into a conducting state, the IBM experiments showed that the materials maintain a stable metallic state even when power to the device is removed. This non-volatile property means that chips using devices that operate using this novel phenomenon could be used to store and transport data in a more efficient, event-driven manner instead of requiring the state of the devices to be maintained by constant electrical currents.



"Our ability to understand and control matter at atomic scale dimensions allows us to engineer new materials and devices that operate on entirely different principles than the silicon based information technologies of today," said Dr. Stuart Parkin, an IBM Fellow at IBM Research. "Going beyond today?s charge-based devices to those that use miniscule ionic currents to reversibly control the state of matter has the potential for new types of mobile devices. Using these devices and concepts in novel three-dimensional architectures could prevent the information technology industry from hitting a technology brick wall."

To achieve this breakthrough, IBM researchers applied a positively charged ionic liquid electrolyte to an insulating oxide material - vanadium dioxide - and successfully converted the material to a metallic state. The material held its metallic state until a negatively charged ionic liquid electrolyte was applied, to convert it back to its original, insulating state.

Such metal to insulator transition materials have been extensively researched for a number of years. However, IBM discovered that it is the removal and injection of oxygen into the metal oxides that is responsible for the changes in state of the oxide material when subjected to intense electric fields.

The transition from a conducting state to an insulating state has also previously been obtained by changing the temperature or applying an external stress, both of which do not lend themselves to device applications.

This research was published yesterday in the peer-reviewed journal Science.


Previous
Next
LG Launches 100-Inch Class Laser TV        All News        Sony To Provide Unity Development Environment For PS4, PS3, PS Vita And PS Mobile
Sharp Says Second Qualcomm Investment Set For June     General Computing News      Skype, Spotify and Angry Birds Creators Advise EU

Get RSS feed Easy Print E-Mail this Message

Related News
Globalfoundries To Buy IBM chip-making Business: report
IBM To Help Organizations Tackle Fraud
IBM Watson To Help Fight Cancer
IBM Says It Has Not Provided Any User Data To Government
Lenovo Says China Strike Remains An IBM Matter
MWC: IBM Wants Mobile Apps on Watson
AT&T And IBM Join Forces On The Internet of Things
Scientists Set New Speed Record for Big Data
Samsung Joins IBM In OpenPower Alliance
IBM Considers Selling Its Semiconductor Business: reports
IBM Brings Watson to Africa
Lenovo Buys IBM's x86 Server Business

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .