Saturday, April 19, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Ex-Apple CEO To Sell Mobiles In India
HTC Hired Ex-Samsung Marketing Officer
Xbox One Wolrdwide Sales Cross 5 million
Samsung Works With GLOBALFOUNDRIES On 14 nm FinFET Offering
Facebook To Find Nearby Friends
Console Sales Lift AMD's First Quarter Results
LG Expands 'Second Screen' TV Ecosystem With Open-Source SDK
Amazon Announces Kindle Service For Samsung Devices
Active Discussions
help questions structure DVDR
Made video, won't play back easily
Questions durability monitor LCD
Questions fungus CD/DVD Media, Some expert engineer in optical media can help me?
CD, DVD and Blu-ray burning for Android in development
IBM supercharges Power servers with graphics chips
Werner Vogels: four cloud computing trends for 2014
Video editing software.
 Home > News > Optical Storage > World's...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, September 01, 2009
World's Smallest Semiconductor Laser Heralds New Era in Optical Science


Researchers at the University of California, Berkeley, have reached a new milestone in laser physics by creating the world's smallest semiconductor laser, capable of generating visible light in a space smaller than a single protein molecule.

This breakthrough, described in an advanced online publication of the journal Nature on Sunday, Aug. 30, breaks new ground in the field of optics. The UC Berkeley team not only successfully squeezed light into such a tight space, but found a novel way to keep that light energy from dissipating as it moved along, thereby achieving laser action.

"This work shatters traditional notions of laser limits, and makes a major advance toward applications in the biomedical, communications and computing fields," said Xiang Zhang, professor of mechanical engineering and director of UC Berkeley's Nanoscale Science and Engineering Center, which is funded by the National Science Foundation (NSF), and head of the research team behind this work.

The achievement helps enable the development of such innovations as nanolasers that can probe, manipulate and characterize DNA molecules; optics-based telecommunications many times faster than current technology; and optical computing in which light replaces electronic circuitry with a corresponding leap in speed and processing power.



While it is traditionally accepted that an electromagnetic wave - including laser light - cannot be focused beyond the size of half its wavelength, research teams around the world have found a way to compress light down to dozens of nanometers by binding it to the electrons that oscillate collectively at the surface of metals. This interaction between light and oscillating electrons is known as surface plasmons.

Scientists have been racing to construct surface plasmon lasers that can sustain and utilize these tiny optical excitations. However, the resistance inherent in metals causes these surface plasmons to dissipate almost immediately after being generated, posing a critical challenge to achieving the buildup of the electromagnetic field necessary for lasing.

Zhang and his research team took a novel approach to stem the loss of light energy by pairing a cadmium sulfide nanowire - 1,000 times thinner than a human hair - with a silver surface separated by an insulating gap of only 5 nanometers, the size of a single protein molecule. In this structure, the gap region stores light within an area 20 times smaller than its wavelength. Because light energy is largely stored in this tiny non-metallic gap, loss is significantly diminished.

With the loss finally under control through this unique "hybrid" design, the researchers could then work on amplifying the light.

"When you are working at such small scales, you do not have much space to play around with," said Rupert Oulton, the research associate in Zhang's lab who first theorized this approach last year and the study's co-lead author. "In our design, the nanowire acts as both a confinement mechanism and an amplifier. It's pulling double duty."

Trapping and sustaining light in radically tight quarters creates such extreme conditions that the very interaction of light and matter is strongly altered, the study authors explained. An increase in the spontaneous emission rate of light is a telltale sign of this altered interaction; in this study, the researchers measured a six-fold increase in the spontaneous emission rate of light in a gap size of 5 nanometers.

Recently, researchers from Norfolk State University reported lasing action of gold spheres in a dye-filled, glasslike shell immersed in a solution. The dye coupled to the gold spheres could generate surface plasmons when exposed to light.

The UC Berkeley researchers used semiconductor materials and fabrication technologies that are commonly employed in modern electronics manufacturing. By engineering hybrid surface plasmons in the tiny gap between semiconductors and metals, they were able to sustain the strongly confined light long enough that its oscillations stabilized into the coherent state that is a key characteristic of a laser.

"What is particularly exciting about the plasmonic lasers we demonstrated here is that they are solid state and fully compatible with semiconductor manufacturing, so they can be electrically pumped and fully integrated at chip-scale," said Volker Sorger, a Ph.D. student in Zhang's lab and study co-lead author.

"Plasmon lasers represent an exciting class of coherent light sources capable of extremely small confinement," said Zhang. "This work can bridge the worlds of electronics and optics at truly molecular length scales."

Scientists hope to eventually shrink light down to the size of an electron's wavelength, which is about a nanometer, or one-billionth of a meter, so that the two can work together on equal footing.

"The advantages of optics over electronics are multifold," added Thomas Zentgraf, a post-doctoral fellow in Zhang's lab and another co-lead author of the Nature paper. "For example, devices will be more power efficient at the same time they offer increased speed or bandwidth."


Previous
Next
NETGEAR Ships Dual Band Wireless-N Gigabit Router Gamers        All News        Microsoft to Deliver Windows Mobile 6.5 Phones on Oct. 6
Mitsubishi Kagaku Media Acquires Freecom B.V     Optical Storage News      Pulstec Introduces The MASTER Series Of Stamper Evaluation System for Blu-ray

Get RSS feed Easy Print E-Mail this Message

Related News
Sharp Offers Red Laser For HUD Applications and Small Projectors
New Green Semiconductor Laser Diode Achives Twice the Luminosity of Conventional Diodes
Panasonic Three-Wavelength Semiconductor Laser Simpilifies The Design Of Optical Pickup Units
Sony Announces New Optical Disc Archive Solution
Mitsubishi's New Red Laser Diode for Pico Projectors Offers Industry-leading Output Power
Sony Announced New BDXL-compatible, High-power Laser Diodes
Sony Develops Blue-violet Semiconductor Laser With An Output Of 100 Watt
Nichia Starts Sample Shipments of Green Laser
Panasonic to Raise its Annual Production Output of Dual-wavelength High-power Laser For DVD Recorders
Renesas Enters Blue-Violet Laser Market with a Laser Diode
First Germanium Laser Bring Us Closer To Computers That Use Light Instead Of Electricity To Move Data
Mitsubishi's New Red Laser Diode for Pico Projectors Offers Industry-leading Output Power

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .