Thursday, July 19, 2018
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Comcast Won't Pursuit Fox assets, Focuses on Sky Offer
EU to Probe Qualcomm Over Pricing Case
Google's Project Fuchsia Could Be The Successor of Android Successor to Android
TSMC Cuts Sales, Spending Outlook
Alphabet to Deploy Balloon Internet in Kenya
New Xiaomi Mi Max 3 has a 6.9-inch Screen But Only 1080p
Corning Gorilla Glass 6 Promises Improved Durability for Mobile Devices
Samsung's Foldable Phone Coming Next Year, WSJ Claims
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > IBM Sci...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, May 17, 2016
IBM Scientists Achieve Storage Memory Breakthrough


Scientists at IBM Research have demonstrated reliably storing 3 bits of data per cell using a relatively new memory technology known as phase-change memory (PCM).

The current memory landscape spans from venerable DRAM to hard disk drives to ubiquitous flash. But in the last several years PCM has attracted the industry’s attention as a potential universal memory technology based on its combination of read/write speed, endurance, non-volatility and density. For example, PCM doesn’t lose data when powered off, unlike DRAM, and the technology can endure at least 10 million write cycles, compared to an average flash USB stick, which tops out at 3,000 write cycles.

IBM scientists envision standalone PCM as well as hybrid applications, which combine PCM and flash storage together, with PCM as an extremely fast cache. For example, a mobile phone’s operating system could be stored in PCM, enabling the phone to launch in a few seconds. In the enterprise space, entire databases could be stored in PCM for blazing fast query processing for time-critical online applications, such as financial transactions.

Machine learning algorithms using large datasets will also see a speed boost by reducing the latency overhead when reading the data between iterations.

PCM materials exhibit two stable states, the amorphous (without a clearly defined structure) and crystalline (with structure) phases, of low and high electrical conductivity, respectively.

To store a '0' or a '1', known as bits, on a PCM cell, a high or medium electrical current is applied to the material. A '0' can be programmed to be written in the amorphous phase or a '1' in the crystalline phase, or vice versa. Then to read the bit back, a low voltage is applied. This is how re-writable Blue-ray Discs store videos.

Previously scientists at IBM and other institutes have demonstrated the ability to store 1 bit per cell in PCM, but today at the IEEE International Memory Workshop in Paris, IBM scientists are presenting, for the first time, successfully storing 3 bits per cell in a 64k-cell array at elevated temperatures and after 1 million endurance cycles.

"Phase change memory is the first instantiation of a universal memory with properties of both DRAM and flash, thus answering one of the grand challenges of our industry," said Dr. Haris Pozidis, an author of the paper and the manager of non-volatile memory research at IBM Research - Zurich. "Reaching 3 bits per cell is a significant milestone because at this density the cost of PCM will be significantly less than DRAM and closer to flash."

To achieve multi-bit storage IBM scientists have developed two technologies: a set of drift-immune cell-state metrics and drift-tolerant coding and detection schemes.

More specifically, the new cell-state metrics measure a physical property of the PCM cell that remains stable over time, and are thus insensitive to drift, which affects the stability of the cell’s electrical conductivity with time. To provide additional robustness of the stored data in a cell over ambient temperature fluctuations a novel coding and detection scheme is employed. This scheme adaptively modifies the level thresholds that are used to detect the cell’s stored data so that they follow variations due to temperature change. As a result, the cell state can be read reliably over long time periods after the memory is programmed, thus offering non-volatility.

The experimental multi-bit PCM chip used by IBM scientists is connected to a standard integrated circuit board. The chip consists of a 2 x 2 Mcell array with a 4- bank interleaved architecture. The memory array size is 2 x 1000 μm x 800 μm. The PCM cells are based on doped-chalcogenide alloy and were integrated into the prototype chip serving as a characterization vehicle in 90 nm CMOS baseline technology.



Previous
Next
Crucial Releases New Ballistix Sport LT DDR4 SODIMMs        All News        Firefox Edges Out Microsoft For First Time in Browser Wars
HP Unveils Production-Ready 3D Printing System     General Computing News      Firefox Edges Out Microsoft For First Time in Browser Wars

Get RSS feed Easy Print E-Mail this Message

Related News
IBM Develops Ultra-fast Phase Change Memory System
Micron Extends Portfolio of Phase Change Memory for Mobile Devices
Micron Brings Phase Change Memory for Mobile Devices, Releases m4 mSATA SSD for Ultrabooks
Researchers Use Diamond To Increase Data Storage Of Phase-Change Memory
IBM scientists Demonstrate Computer Memory Breakthrough
Researchers Create Phase-change Disk Drives
New Ultra-low-power Memory Dramatically Extends Battery Life For Mobile Devices
HP Researchers See Memristors As The Future Of Memory Chips
Non-Volatile-Memories Take the Stage at ISSCC 2010
Samsung And Numonyx Join Forces On Phase Change Memory
Phase Change Technology to Challenge Flash Memory

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2018 - All rights reserved -
Privacy policy - Contact Us .