Friday, November 24, 2017
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Samsung Foundry in Advanced Discussions With New Customers for 7nm Chips
Tesla Finished Installing the World's Largest Mega-battery in Australia Within 100 Days
Apple Applies for Patent on Foldable Display
HP Patches Code execution Bug in Enterprise Printers
YouTube Takes More Steps to Tackle Down Videos Inappropriate for Minors
Broadcom Considering Increasing Qualcomm Bid
Facebook Will Notify you if you Have Followed Russian Propaganda
Russia Threatens to Block Ads on Google
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > Microso...
Last 7 Days News : SU MO TU WE TH FR SA All News

Saturday, November 14, 2015
Microsoft Offers Sneak Peek Into Quantum Computing With LIQUi|> Toolsuite


There is not any full-scale, working quantum computer yet but the potential is so great that computer scientists at Microsoft are already building systems that will allow quantum computer scientists to hit the ground running as soon as one becomes available.

Next week, at the SuperComputing 2015 conference in Austin, Texas, Dave Wecker, a lead architect on Microsoft's Quantum Architectures and Computation Group (QuArC) team, will discuss the recent public release on GitHub of a suite of tools that allows computer scientists to simulate a quantum computer’s capabilities. That’s a crucial step in building the tools needed to run actual quantum computers.

"This is the closest we can get to running a quantum computer without having one," said Wecker, who has helped develop the software.

The software is called Language-Integrated Quantum Operations, or LIQUi|>. The funky characters at the end refer to how a quantum operation is written in mathematical terms.

LIQUi|> is a software architecture and toolsuite for quantum computing. It will include programming languages, optimization and scheduling algorithms, and quantum simulators. Ultimately, LIQUi|> will be used to translate a quantum algorithm written in the form of a high-level program into the low-level machine instructions for a quantum device.

To aid in the development and understanding of quantum protocols, quantum algorithms, quantum error correction, and quantum devices, QuArC has developed the LIQUi|> software platform. LIQUi|> allows the simulation of Hamiltonians, quantum circuits, quantum stabilizer circuits, and quantum noise models, and supports Client, Service, and Cloud operation. It allows the user to express circuits in a high-level functional language (F#), and supports the extraction of circuit data structures that can be passed to other components for circuit optimization, quantum error correction, gate replacement, export or rendering. The system is architected to be fully modular to permit easy extension as desired.

LIQUi|> includes circuit simulation of up to 30 qubits on a single machine with 32 GB RAM, limited only by memory and computing threads. The largest number factored to date on the simulator is a 13-bit number, which required 27 qubits, half a million gates, and 5 days runtime. The circuit was based on Beauregard’s circuit for Shor’s algorithm.

Ultimately, LIQUi|> will be used to translate a quantum algorithm written in the form of a high-level program into low-level machine instructions for a quantum device. It will include compilers, optimizers, translators, and various simulators.

The researchers are hoping that, using LIQUi|>, computer scientists at Microsoft and other academic and research institutions will be able to perfect the algorithms they need to efficiently use a quantum computer even as the computers themselves are simultaneously being developed.

"We can actually debut algorithms in advance of running them on the computer," said Krysta Svore, a senior researcher who manages QuArC.

In addition to the QuArC research group, Microsoft’s Station Q research lab, led by renowned mathematician Michael Freedman, is pursuing an approach called topological quantum computing that they believe will be more stable than other quantum computing methods.

The idea is to design software, hardware and other elements of quantum computing all at the same time.

"This isn’t just, 'Make the qubits.' This is, "Make the system,'" Wecker said.

A qubit is a unit of quantum information, and it’s the key building block to a quantum computer. Using qubits, researchers believe that quantum computers could very quickly evaluate multiple solutions to a problem at the same time, rather than sequentially. That would give scientists the ability to do high-speed, complex calculations, allowing biologists, physicists and chemists to get information they never thought possible before.

Using the principles of quantum physics, quantum computers could solve compale problems that it would take a regular computer the lifetime of the universe to solve them.

Take fertilizer, for example. Fertilizers are crucial to feeding the world’s growing population because they allow plants to develop better and faster. But synthetic fertilizer relies on natural gas, and lots of it: That’s expensive, depletes an important natural resource and adds to pollution.

Using a quantum computer, Wecker said scientists think they could map the chemical used by bacteria that naturally creates fertilizers, making it easier to create an alternative to the current, natural-gas based synthetic fertilizer.

Although quantum computers can process data much faster, it’s much more difficult to get the results of their calculations because of how qubits are structured. A person using a quantum system needs to know the right question to ask in order to efficiently get the answer they want.

For now at least, quantum computer scientists also are struggling to create systems that can run lots of qubits. Because qubits are essentially a scarce resource, Svore said another big research focus is on how to minimize the number of qubits needed to do any algorithm or calculation. That’s also one of the main focuses of Station Q, which is using an area of math called topology to find ways to use fewer qubits.



Previous
Next
IBM, Xilinx target Intel With Chip Collaboration        All News        Halo Game Helped Xbox One Sales In October
IBM, Xilinx target Intel With Chip Collaboration     General Computing News      Video Malware Attack Spreads Across Websites

Get RSS feed Easy Print E-Mail this Message

Related News
IBM Prototypes a 50-Qubit Quantum Computer
Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging
IBM Scientists Demonstrate Ballistic Nanowire Connections for Quantum Computing
IBM Doubles Compute Power for IBM Q Commercial Systems with New Quantum Computing Processor
IBM Building First Universal Quantum Computers
IBM Makes Quantum Computing Available on IBM Cloud
Rambus And Microsoft To Explore Future Memory Systems
Google Reports Progress In Quantum Computing
Japanese Researchers Succeed in Quantum Key Distribution at World-Record Distance of 120 km
Intel Invests US$50 Million to Advance Quantum Computing
IBM Scientists Achieve Critical Steps to Building First Quantum Computer
Researchers Claim Quantum Computing Breakthrough

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2017 - All rights reserved -
Privacy policy - Contact Us .