Wednesday, March 29, 2017
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
New Intel Xeon Processor E3-1200 v6 Product Family Targets Pros
Google Assistant Is Coming To More Connected Devices
Self-assembly Technique Could Solve Miniaturization Chip Making Issues
Prepare For Battle GeForce GTX Bundle Includes For Honor or Tom Clancy's Ghost Recon Wildlands Games
VIZIO's 2017 D-Series Smart TV Collection Includes 4K Ultra HD Support in Select Models
Facebook Attacks Snapchat With New Camera Features
China Tech Giant Tencent Buys 5 Percent Stake In Tesla
Hyundai Motor To Develop Its Own Automotive Chips
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > Mobiles > Nvidia ...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, August 12, 2014
Nvidia Details New 64-bit Tegra K1 Denver Processor For Android


Eight months after unveiling Tegra K1’s 32-bit version, Nvidia is providing further architectural details of the chip’s 64-bit version at HOT CHIPS, a technical conference on high-performance chips.

This new version of Tegra K1 pairs our 192-core Kepler architecture-based GPU with Nvidia's own custom-designed, 64-bit, dual-core "Project Denver" CPU, which is fully ARMv8 architecture compatible. Further, Denver is fully pin compatible with the 32-bit Tegra K1.

The 64-bit Tegra K1 is the world’s first 64-bit ARM processor for Android, and according to Nvidia, the new chip completely outpaces other ARM-based mobile processors.

Each of the two Denver cores implements a 7-way superscalar microarchitecture (up to 7 concurrent micro-ops can be executed per clock), and includes a 128KB 4-way L1 instruction cache, a 64KB 4-way L1 data cache, and a 2MB 16-way L2 cache, which services both cores.

Denver implements a process called Dynamic Code Optimization, which optimizes frequently used software routines at runtime into dense tuned microcode-equivalent routines. These are stored in a dedicated, 128MB main-memory-based optimization cache. After being read into the instruction cache, the optimized micro-ops are executed, re-fetched and executed from the instruction cache as long as needed and capacity allows.

Effectively, this reduces the need to re-optimize the software routines. Instead of using hardware to extract the instruction-level parallelism (ILP) inherent in the code, Denver extracts the ILP once via software techniques, and then executes those routines repeatedly, thus amortizing the cost of ILP extraction over the many execution instances.

As part of the Dynamic Code Optimization process, Denver looks across a window of hundreds of instructions and unrolls loops, renames registers, removes unused instructions, and reorders the code in various ways for optimal speed. This effectively doubles the performance of the base-level hardware through the conversion of ARM code to highly optimized microcode routines and increases the execution energy efficiency.

The slight overhead of the dynamic optimization process is outweighed by the performance gains of already having optimized code ready to execute. In cases where code may not be frequently reused, Denver can process those ARM instructions directly without going through the dynamic optimization process.

Dynamic Code Optimization works with all standard ARM-based applications, requiring no customization from developers, and without added power consumption versus other ARM mobile processors. That’s because the 7-wide superscalar design allows faster throughput than would otherwise be possible at the same clock speed.

Denver’s design delivers performance for both single- and multi-threaded applications, as well as multitasking scenarios. Nvidia says that the dual-CPU cores can attain higher performance than existing four- to eight-core mobile CPUs on most mobile workloads.

Denver also features new low latency power-state transitions, in addition to extensive power-gating and dynamic voltage and clock scaling based on workloads. "Combining Dynamic Code Optimization, 7-way superscalar design and efficient power usage, Denver’s performance will rival some mainstream PC-class CPUs at significantly reduced power consumption," Nvdia claims.



Previous
Next
New Xbox Bundles Announced at Gamescom        All News        Apple In Talks With Health Providers For Healthkit
Samsung Introduces All-metal Galaxy Alpha Smartphone     Mobiles News      Global Smartphone Shipments To Reach 322 million in 3Q14

Get RSS feed Easy Print E-Mail this Message

Related News
Prepare For Battle GeForce GTX Bundle Includes For Honor or Tom Clancy's Ghost Recon Wildlands Games
Nvidia Chips To Power Paccar Driverless Trucks
NVIDIA Partners with Bosch For Self-driving System Based on The DRIVE PX Xavier Platform
New Nvidia Game Ready Driver Boosts GeForce DirectX 12 Performance
NVIDIA Jetson TX2 Credit card-sized Platform Released
GeForce GTX 1080 Ti, Nvidia's fastest Card Yet, Arrives At $699
Nvidia, and AMD Increase GPU Attach Rates While Total GPU Shipments Remain Flat
Nvidia Reports Record Revenue Driven by Gaming GPUs Datacenter And Tegra
NVIDIA Powers Supercomputing Workstations with New Quadro GP100, Announce Quadro Pascal Refresh
Nvidia Announces New Ubisoft Game Bundles With GTX 1070, GTX 1080 Cards
NVIDIA Announces the G-SYNC HDR Technology
CES: Nvidia Announces New SHIELD TV, GeForce NOW service, AI Car Projects

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2017 - All rights reserved -
Privacy policy - Contact Us .