Sunday, December 17, 2017
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Samsung Galaxy A8, A8 Plus and LG K Series to Appear at CES
North Korea Behind attacks on Cryptocurrency Exchanges: report
BlackBerry Ends Support for Priv, Talks About the Future of BB10
Google to Shut Down Project Tango in March 2018
Facebook Admits Spending Time on Social Media is Bad for You
Facebook Will Start Putting Ads Before Videos
Samsung's Smart Speaker Coming Next Year
Internet Neutrality is Officially Dead
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > PC Parts > IBM Dev...
Last 7 Days News : SU MO TU WE TH FR SA All News

Thursday, May 08, 2014
IBM Develops Ultra-fast Phase Change Memory System


A team of Greek IBM scientists in IBNM's research lab in Zurich and a professor from the University of Patras, Greece, borrowed Theseus' name as a codeword for a groundbreaking new memory technology, which combines flash with phase change memory (PCM) on a PCI-e card.

Compared to flash memory, which is ubiquitous in everything from USB sticks to data centers, the PCM memory have clocked 12x and 275x improvements, according to IBM.

Phase-change materials, the premise of the technology, exhibit two metastable states which can store data when placed between two electrically conducting electrodes. When a high or medium current is applied to the material, it can be programmed to write a '0' in the amorphous phase or a '1' in the crystalline phase. A low current is then applied to read out the cells to access the data. Blu-ray discs are an example of a phase change material.

But IBM scientists have bigger plans for phase-change materials than just storing movies. They see it as a critical piece of the overall storage hierarchy to improve the speed and endurance of enterprise-class systems to store and analyze Big Data.

Venerable DRAM, traditional hard disk drives and the flash, each come with their own limitations. DRAM experiences difficulties when scaled beyond 25 nanometers and is expensive per Gigabyte. DRAM also requires significant power consumption and is volatile, so when you unplug your device, you lose everything.

HDDs are mechanical, making them only suitable for certain applications. Additionally, they consume a lot of energy and their normalized I/O throughput (IOPS/GB) is orders of magnitude less that the other memory technologies, and decreasing continuously.

Flash memory has its own scalability problems and when aggressively scaled, it not only scores low in performance, but also in endurance. For example, current consumer class multi-level cell (MLC) flash tops out at 3,000 read/write cycles. This means after rewriting to your USB stick 3,000 times you will notice performance degradation, like lost data and errors. Enterprise class MLC, used for cloud data centers, can be scaled much higher with the support of complex wear-leveling and collection algorithms.

PCM offers excellent and predictable performance in terms of throughput and latency, and high endurance and scalability. For example, when compared to flash, PCM can endure at least 10 million write cycles, but don?t expect PCM to replace flash, the two will work together.

IBM scientists for the first time demonstrated a hybrid storage and caching subsystem, code-named Project Theseus, at the recent 2014 Non-Volatile Memories Workshop in San Francisco, California.

IBM scientist Ioannis Kolsidas explains, "The technologies are complementary, which is why the Theseus project is so important. We took two very different memory technologies and made them work on an existing PCI-e bus, which can be found on any PC or laptop today, taking it a step closer from demo to deployment."

When tested, the PCI-e card demonstrated remarkable results. In terms of write latency, it completed 99.9% of the requests within 240 microseconds - equal to one millionth of a second. The same experiment, carried out against an enterprise-class PCI-e flash card and a consumer-level flash SSD, yielded a 12x and 275x longer completion times for the best 99.9% of the requests.

Kolsidas and his colleagues are already working on version 2.0 of this PCI-e card and they expect even faster performance with the latest PCM chips.

The team expects PCM to enter the market by 2016 for enterprise class applications like cloud computing and Big Data analytics.




Previous
Next
Nvidia Details Financial Results For First Q Fiscal 2015        All News        FTC Says Snapchat Deceived Consumers
Samsung Has Started 3D V-NAND Production In Chinese Facility     PC Parts News      Tablet Growth Slows In Q1 2014, Windows XP Migration Helps Slow the Desktop and Notebook Decline

Get RSS feed Easy Print E-Mail this Message

Related News
IBM Announces Collaboration With Leading Companies to Accelerate Quantum Computing
IBM Says New POWER9-based AC922 Power Systems Offer 4x Deep-learning Framework Performance Over x86
IBM Scientists Demonstrate 10x Faster Machine Learning Using GPUs
IBM Demonstrates In-memory Computing
IBM Unveils New High-Powered Analytics System for Fast Access to Data Science
IBM Claims Record Deep Learning Performance
New Sony Magnetic Tape Storage Technology Supports High-Capacity 330 TB Recording
IBM Z Mainframe Features Pervasive Data Encryption
Researchers Say Silicon Nanosheets is the Path to 5nm Transistors
Wanda and IBM To Bring IBM Cloud to China
Researchers Store Data on A Single Atom
IBM Building First Universal Quantum Computers

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2017 - All rights reserved -
Privacy policy - Contact Us .