Sunday, November 23, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Regin Trojan Enables Stealthy Surveillance: Symantec
ASTC Says 100 TB HDDs Coming in 2025
Alienware Alpha PC Gaming Console Now Shipping
Samsung Files ITC Complaint Against Nvidia
Europe To Ask Google Unlink Its Commercial And Search Services
Streaming TV Service Aereo Files for Bankruptcy
Square Launches Cash Register Service
Call of Duty: Advanced Warfare is the Biggest Entertainment Launch of 2014
Active Discussions
cdrw trouble
CDR for car Sat Nav
DVD/DL for Optiarc 7191S at 8X
Copied dvd's say blank in computer only
Made video, won't play back easily
New Features In Firefox 33
updated tests for dvd and cd burners
How to generate lots of different CDs quickly
 Home > News > General Computing > Scienti...
Last 7 Days News : SU MO TU WE TH FR SA All News

Friday, March 22, 2013
Scientists Discover New Atomic Technique to Charge Memory Chips


IBM today announced a materials science breakthrough at the atomic level that could pave the way for a new class of non-volatile memory and logic chips that would use less power than today?s silicon based devices.

Rather than using conventional electrical means that operate today's semiconducting devices, IBM's scientists discovered a new way to operate chips using tiny ionic currents, which are streams of charged atoms that could mimic the event-driven way in which the human brain operates.

Today's computers typically use semiconductors made with CMOS process technologies and it was long thought that these chips would double in performance and decrease in size and cost every two years. But the materials and techniques to develop and build CMOS chips are rapidly approaching physical and performance limitations and new solutions may soon be needed to develop high performance and low-power devices.

IBM research scientists showed that it is possible to reversibly transform metal oxides between insulating and conductive states by the insertion and removal of oxygen ions driven by electric fields at oxide-liquid interfaces. Once the oxide materials, which are innately insulating, are transformed into a conducting state, the IBM experiments showed that the materials maintain a stable metallic state even when power to the device is removed. This non-volatile property means that chips using devices that operate using this novel phenomenon could be used to store and transport data in a more efficient, event-driven manner instead of requiring the state of the devices to be maintained by constant electrical currents.



"Our ability to understand and control matter at atomic scale dimensions allows us to engineer new materials and devices that operate on entirely different principles than the silicon based information technologies of today," said Dr. Stuart Parkin, an IBM Fellow at IBM Research. "Going beyond today?s charge-based devices to those that use miniscule ionic currents to reversibly control the state of matter has the potential for new types of mobile devices. Using these devices and concepts in novel three-dimensional architectures could prevent the information technology industry from hitting a technology brick wall."

To achieve this breakthrough, IBM researchers applied a positively charged ionic liquid electrolyte to an insulating oxide material - vanadium dioxide - and successfully converted the material to a metallic state. The material held its metallic state until a negatively charged ionic liquid electrolyte was applied, to convert it back to its original, insulating state.

Such metal to insulator transition materials have been extensively researched for a number of years. However, IBM discovered that it is the removal and injection of oxygen into the metal oxides that is responsible for the changes in state of the oxide material when subjected to intense electric fields.

The transition from a conducting state to an insulating state has also previously been obtained by changing the temperature or applying an external stress, both of which do not lend themselves to device applications.

This research was published yesterday in the peer-reviewed journal Science.


Previous
Next
LG Launches 100-Inch Class Laser TV        All News        Sony To Provide Unity Development Environment For PS4, PS3, PS Vita And PS Mobile
Sharp Says Second Qualcomm Investment Set For June     General Computing News      Skype, Spotify and Angry Birds Creators Advise EU

Get RSS feed Easy Print E-Mail this Message

Related News
IBM Patents Cloud Privacy Engine
IBM Introduces Verse Business E-mail With Social Media Integration
Lufthansa Signs $1.25 billion Deal with IBM
Twitter and IBM Form Partner to Data Analytics
Glonbalfoundries Buy IBM's Micorelectronics Business
New IBM Tape Cartridge Holds 10TB Uncompressed Data
IBM and SAP Partner On Enterprise Cloud
IBM Claims New OpenPOWER-Based Systems Are Superior Alternative to x86-Based Servers
Lenovo Set to Close Acquisition of IBM's x86 Server Business
IBM Offers Watson Data Tool To the Mainstream
IBM and Intel Bring New Security Features to the Cloud
IBM Tries To Strengthen Its Presence In China With Local Vendor Deal

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .