Friday, August 28, 2015
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
IFA 2015: What We Know So Far
Acer Liquid Z410 And Liquid Jade Z Phones Released
Huawei Honor Phones Coming To Europe
AMD Radeon R9 370X Graphics Card Launched In Asia
Nokia Agrees on 'Shanghai Bell' Joint Venture with China Huaxin
Apple Debuts at the Number Two Spot In Wearables Market, Behind Fibit
Microsoft's Lumia 950 and 950 XL Windows 10 Smartphones Leaked Online
Facebook Says It Has One Billion Users Per Day
Active Discussions
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
How to burn a backup copy of The Frozen Throne
Help make DVDInfoPro better with dvdinfomantis!!!
Copied dvd's say blank in computer only
menu making
Optiarc AD-7260S review
 Home > News > General Computing > Samsung...
Last 7 Days News : SU MO TU WE TH FR SA All News

Friday, November 30, 2012
Samsung Develops Highly Stretchable Electric Circuits


Researchers have developed a rubber fiber/nano-particles conductive nano composite, which can be used to create bendable and strechable electronic devices.

For development of bendable and pullable electronic devices, it is critical to develop stretchable electrodes that maintain their electrical properties and remain stable with physical deformation like bending and elongation. However it has been difficult to secure two specifications at the same time because high conductivity and stretchability are mutually exclusive parameters.

Any stretchable electrodes developed so far could not be easily applied in devices because they could not maintain sufficient conductivity and form fine patterns at large strains. Moreover, the ability to make arbitrary patterns over large areas was also desirable.

Professor UnRyong Jeong (Yonsei University) and and Dr. JongJin Park (Samsung Advanced Institute of Technology) introduced a conductive composite mat of silver nanoparticles and rubber fibres that allows the formation of highly stretchable circuits through a fabrication process that is compatible with any substrate and scalable for large-area applications.

According to the researchers, a silver nanoparticle precursor is absorbed in electrospun poly styrene-block-butadiene-block-styrene) (SBS) rubber fibres and then converted into silver nanoparticles directly in the fibre mat.

Percolation of the silver nanoparticles inside the fibres leads to a high bulk conductivity, which is preserved at large deformations (σ ≈ 2,200 S cm-1 at 100% strain for a 150-µm-thick mat).

The researches have managed to design electric circuits directly on the electrospun fibre mat by nozzle printing, inkjet printing and spray printing of the precursor solution and fabricated a highly stretchable antenna, a strain sensor and a highly stretchable light-emitting diode as examples of applications.

The researchers plan to further advance the technology to allow the development of wearable electronics, textile electronics, and e-skin sensors.


Previous
Next
Xbox 360 Tops Black Friday Console Sales        All News        Apple Releases Revamped ITunes 11
EU To Defend Open Internet at Dubai Conference     General Computing News      Apple Releases Revamped ITunes 11

Get RSS feed Easy Print E-Mail this Message

Related News
Samsung Used TSMC's Technology To Prevail In Chip Manufacturing Race
Samsung To Accelerate Chip Production
Samsung Announces New Wireless Audio 360 Speakers
Samsung Says Users Should Follow The Manual With Galaxy Note 5 Stylus
Samsung To Give iPhone Users The new Galaxy Smartphones
New Galaxy Note 5 Phablet Has The Best Display: report
Samsung Offers USB Flash Drive Family
Samsung Introduces Level On Wireless Pro Headphones
New Samsung Galaxy Note 5 and S6 Edge Plus Phablets Unveiled
Samsung Rolls Out Line-up of V-NAND SSDs For Data Centers
Samsung Begins Mass Producing 256-Gigabit, 3D V-NAND Flash Memory
Samsung To Offer Monthly Security Updates To Android Phones

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .