Thursday, December 18, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
North Korea Linked To Recent Sony Hacking
Sony Global Education Established
CEA and Japan Audio Society to Jointly Promote Hi-Res Audio
Intel, IBM Follow Different Strategies On 14nm FinFET
Toshiba Announces 6TB Enterprise Capacity HDD Models
WebOS 2.0 Smart TV Platfom To Debut At CES
ICANN Targeted in Phishing Attack
BlackBerry Classic Makes Official Debut
Active Discussions
Windows xp
Will there be any trade in scheme for the coming PSP Go?
Hello, Glad to be Aboard!!!
Best optical drive for ripping CD's? My LG 4163B is mediocre.
Hi All!
cdrw trouble
CDR for car Sat Nav
DVD/DL for Optiarc 7191S at 8X
 Home > News > General Computing > IBM Sci...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, August 14, 2012
IBM Scientists Closer To Using Spintronics in Computing


Aiming to use electron spins for storing, transporting and processing information, researchers from IBM and scientists at ETH Zurich revealed the first-ever direct mapping of the formation of a persistent spin helix in a semiconductor.

Until now, it was unclear whether or not electron spins possessed the capability to preserve the encoded information long enough before rotating. Unveiled in the peer-reviewed journal Nature Physics, scientists from IBM Research and the Solid State Physics Laboratory at ETH Zurich demonstrated that synchronizing electrons extends the spin lifetime of the electron by 30 times to 1.1 nanoseconds - the same time it takes for an existing 1 GHz processor to cycle.

Today's computing technology encodes and processes data by the electrical charge of electrons. However, this technique is limited as the semiconductor dimensions continue to shrink to the point where the flow of electrons can no longer be controlled. Spintronics could surmount this approaching impasse by harnessing the spin of electrons instead of their charge.

This new understanding in spintronics not only gives scientists unprecedented control over the magnetic movements inside devices but also opens new possibilities for creating more energy efficient electronics.

A previously unknown aspect of physics, the scientists observed how electron spins move tens of micrometers in a semiconductor with their orientations synchronously rotating along the path similar to a couple dancing the waltz, the famous Viennese ballroom dance where couples rotate.

Dr. Gian Salis of the Physics of Nanoscale Systems research group at IBM Research - Zurich explains, "If all couples start with the women facing north, after a while the rotating pairs are oriented in different directions. We can now lock the rotation speed of the dancers to the direction they move. This results in a perfect choreography where all the women in a certain area face the same direction. This control and ability to manipulate and observe the spin is an important step in the development of spin-based transistors that are electrically programmable."

How it works

IBM scientists used ultrashort laser pulses to monitor the evolution of thousands of electron spins that were created simultaneously in a very small spot. Atypically, where such spins would randomly rotate and quickly lose their orientation, for the first time, the scientists could observe how these spins arrange neatly into a regular stripe-like pattern, the so-called persistent spin helix.

The concept of locking the spin rotation was originally proposed in theory back in 2003 and since that time some experiments have even found indications of such locking, but until now it had never been directly observed.

IBM scientists imaged the synchronous "waltz" of the electron spins by using a time-resolved scanning microscope technique. The synchronization of the electron spin rotation made it possible to observe the spins travel for more than 10 micrometers or one-hundredth of a millimeter, increasing the possibility to use the spin for processing logical operations, both fast and energy-efficiently.

The reason for the synchronous spin motion is a carefully engineered spin-orbit interaction, a physical mechanism that couples the spin with the motion of the electron. The semiconductor material called gallium arsenide (GaAs) was produced by scientists at ETH Zurich who are known as world experts in growing ultraclean and atomically precise semiconductor structures. GaAs is a III/V semiconductor commonly used in the manufacture of devices such as integrated circuits, infrared light-emitting diodes and highly efficient solar cells.

Transferring spin electronics from the laboratory to the market still remains a major challenge. Spintronics research takes place at very low temperatures at which electron spins interact minimally with the environment. In the case of this particular research, IBM scientists worked at 40 Kelvin.


Previous
Next
Fraunhofer Develops Smart Wireless Power Outlets        All News        RIM's BB10 Available For Licensing Soon
Fraunhofer Develops Smart Wireless Power Outlets     General Computing News      Google Plus Gets Verified Accounts

Get RSS feed Easy Print E-Mail this Message

Related News
Intel, IBM Follow Different Strategies On 14nm FinFET
Apple and IBM Bring Big Data Analytics and Security Capabilities on iPhone And iPad
Mobile Shopping Dominated During Thanksgiving And Black Friday
IBM Patents Cloud Privacy Engine
IBM Introduces Verse Business E-mail With Social Media Integration
Lufthansa Signs $1.25 billion Deal with IBM
Twitter and IBM Form Partner to Data Analytics
Glonbalfoundries Buy IBM's Micorelectronics Business
New IBM Tape Cartridge Holds 10TB Uncompressed Data
IBM and SAP Partner On Enterprise Cloud
IBM Claims New OpenPOWER-Based Systems Are Superior Alternative to x86-Based Servers
Lenovo Set to Close Acquisition of IBM's x86 Server Business

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .