Friday, April 29, 2016
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
HP Releases New Chromebook for Home and Office
AMD and Nantong Fujitsu Microelectronics Close on Semiconductor Assembly and Test Joint Venture
Google's Pichai Sees the End of Computers
Amazon Reports Strong Quarter
Sony Reports Loss But PlayStation Keeps Performing Well
Japan Display Showcase The Latest In Display Technologies In SID DISPLAY WEEK 2016
Strong Galaxy S7 Sales Keep Samsung's Profit High
LG Posts record Q1 Profit
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > Panason...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, July 31, 2012
Panasonic Artificial Photosynthesis System Generates Organic Materials from CO2 and Water


Panasonic has developed an artificial photosynthesis system which converts carbon dioxide (CO2) to organic materials by illuminating with sunlight at a world's top efficiency of 0.2%.

The efficiency is on a comparable level with real plants used for biomass energy. The key to the system is the application of a nitride semiconductor which makes the system simple and efficient. This development will be a foundation for the realization of a system for capturing and converting wasted carbon dioxide from incinerators, power plants or industrial activities.

CO2 is one of the substances responsible for greenhouse effect and as such, efforts are being made to reduce the emissions of CO2 worldwide. The problem of CO2 is also directly connected to an issue of the depletion of fossil fuels. Artificial photosynthesis is the direct conversion from CO2 into organic materials, which can solve both of these problems.

In the previous approaches so far, the systems have had complex structures such as organic complexes or plural photo-electrodes, which makes it difficult to improve their efficiency in response to the light. Panasonic's artificial photosysnthesis system has a simple structure with highly efficient CO2 conversion, which can utilize direct sunlight or focused light.

Panasonic found firstly that a nitride semiconductor has the capability to excite the electrons with enough high energy for the CO2 reduction reaction. Nitride semiconductors have attracted attention for their potential applications in highly efficient optical and power devices for energy saving. However, its potential was revealed to extend beyond solid devices; more specifically, it can be used as a photo-electrode for CO2 reduction. Making a deviced structure through the thin film process for semiconductors, the performance as a photo-electrode has highly improved.

The CO2 reduction takes place on a metal catalyst at the opposite side of nitride semiconductor photo-electrode. The metal catalyst plays an important role in selecting and accelerating the reaction. Here, it is noted that the system comprises of only inorganic materials, which can reduce the CO2 with low energy loss. Because of this, the amount of reaction products is exactly proportional to the light power. This is one of the merits in such an all-inorganic system while some conventional systems cannot follow the light power in general because of their internal or external rate-limiting processes in the complex structures.

The system with a nitride semiconductor and a metal catalyst generates mainly formic acid from CO2 and water with light at a world's top efficiency of 0.2%. The efficiency is of a comparable level to real plants used in the biomass energy source. The formic acid is an important chemical in industry for dye and fragrances. The reaction rate is completely proportional to the light power due to the low energy loss with simple structure; in other words, the system can respond to focused light. This will make it possible to realize a simple and compact system for capturing and converting wasted carbon dioxide from incinerators and electric generation plants.


Previous
Next
LSI Optimizes SandForce Processors For Ultrabooks        All News        OCZ Z-Drive R4 PCIe SSDs Achieve VMware-Ready
Google Buys Social Ad Start-up Wildfire     General Computing News      Renesas To Receive $633 Million Support From Its Shareholders

Get RSS feed Easy Print E-Mail this Message

Related News
Panasonic LUMIX GX85 Packs High Image Quality In a Compact Body
Panasonic Develops Secong Generation Freeze-ray Optical Disc-Based Data Archive System
Panasonic Announces Two New Rugged Smartphones
Panasonic At CES 2016
Panasonic And Facebook Develop Optical Disc-Based Data Archive System For Data Centers
Panasonic Develops Single Cable and Connector Solution for Transmission of 8K Video Signals
Panasonic Develops Resin Film For Stretchable Electronics
Panasonic's CX Ultra HD Smart TVs Bring 4K Closer To Home
Panasonic DMR-UBZ1 Is The World's First BD Recorder With Ultra HD Blu-ray Playback Capability
Panasonic Develops High-Power Blue-Violet Laser
Panasonic To Showcase New Technics Products And THX-Certified OLED TVs At IFA
Panasonic to Start Mass-Production of the Sensitive Curved Touch Panel

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2016 - All rights reserved -
Privacy policy - Contact Us .