Thursday, December 18, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
North Korea Linked To Recent Sony Hacking
Sony Global Education Established
CEA and Japan Audio Society to Jointly Promote Hi-Res Audio
Intel, IBM Follow Different Strategies On 14nm FinFET
Toshiba Announces 6TB Enterprise Capacity HDD Models
WebOS 2.0 Smart TV Platfom To Debut At CES
ICANN Targeted in Phishing Attack
BlackBerry Classic Makes Official Debut
Active Discussions
Windows xp
Will there be any trade in scheme for the coming PSP Go?
Hello, Glad to be Aboard!!!
Best optical drive for ripping CD's? My LG 4163B is mediocre.
Hi All!
cdrw trouble
CDR for car Sat Nav
DVD/DL for Optiarc 7191S at 8X
 Home > News > General Computing > Samsung...
Last 7 Days News : SU MO TU WE TH FR SA All News

Friday, May 18, 2012
Samsung Presents a New Graphene Device Structure


Samsung Advanced Institute of Technology has developed a new transistor structure utilizing graphene, touted as the "miracle material."

In a research published in the journal Science on Thursday, the R&D incubator for Samsung Electronics described the new structure, which is regarded to have brought industry one step closer to the development of transistors that can overcome the limits of conventional silicon.

Currently, semiconductor devices consist of billions of silicon transistors. To increase the performance of semiconductors (the speed of devices), the options have to been to either reduce the size of individual transistors to shorten the traveling distance of electrons, or to use a material with higher electron mobility which allows for faster electron velocity. For the past 40 years, the industry has been increasing performance by reducing size. However, experts believe we are now nearing the potential limits of scaling down.

Since graphene possesses electron mobility about 200 times greater than that of silicon, it has been considered a potential substitute. Although one issue with graphene is that, unlike conventional semiconducting materials, current cannot be switched off because it is semi-metallic. This has become the key issue in realizing graphene transistors. Both on and off flow of current is required in a transistor to represent "1" and "0" of digital signals. Previous solutions and research have tried to convert graphene into a semiconductor. However, this radically decreased the mobility of graphene, leading to skepticism over the feasibility of graphene transistors.

Scientists at Samsung Advanced Institute of Technology have re-engineering the basic operating principles of digital switches and developed a device that can switch off the current in graphene without degrading its mobility. The demonstrated graphene-silicon Schottky barrier can switch current on or off by controlling the height of the barrier. The new device was named Barristor, after its barrier-controllable feature.

Schottky Barrier is a potential (energy) barrier formed at a metal-semiconductor interface. It prevents an electric charge to flow from metal to silicon. Generally, metal-semiconductor junction would have fixed work function (the minimum energy needed to take an electron out of material) and Schottky barrier height, but as for graphene, Schottky barrier height can be controlled through the work function.

In addition, to expand the research into the possibility of logic device applications, the most basic logic gate (inverter) and logic circuits (half-adder) were fabricated, and basic operation (adding) was demonstrated.

Samsung Advanced Institute of Technology owns 9 major patents related to the structure and the operating method of the Graphene Barristor.

As demonstrated in this research, the institute has solved the most difficult problem in graphene device research and has opened the door to new directions for future studies.

"The timing of commercialization of the device will be earlier than expected as the development is a minor upgrade from current chip-making technology," said Samsung.

Scientists and chip experts are also saying that finding a replacement for silicon is still a long way off as devices with graphene have only ever been demonstrated on a "very small scale."


Previous
Next
Dolby Claims TrueHD Upsampling Elevates the Quality of Lossless Audio on Blu-ray        All News        ASUS P8C WS Motherboard Comes With Intel C216 Chipset
Firefox 13 To Have A 'Reset' Button     General Computing News      Comcast to Charge Heavy Downloaders

Get RSS feed Easy Print E-Mail this Message

Related News
LG, Samsung, To Dominate The TV Market in 2015
Samsung Started Production of Apple A9 SoC in 14nm FinFET
Samsung Announces Annual Reorganization for 2015
Samsung Releases New 3-bit V-NAND 850 EVO SSD
Possible Samsung Galaxy S6 Specs Leak
Samsung Seeks to Toss $930 Million Award
Samsung To Sell Fiberoptics Business to Corning
Samsung to Test Tizen Phone in India
Far Cry 4 Game Available For Free With Purchase of 840 EVO SSD
Samsung's DeepSort Sorting Engine Prevails In Benchmarks
Samsung Introduces EYECAN+ Mouse for People with Disabilities
Samsung to Phase Out Mobile App Service

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .