Wednesday, August 05, 2015
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Project Tango Tablet Coming to More Countries
Silver Lake To Invest $1 billion To Motorola: report
GE Unveils Cloud Service For Industrial Use
New Acer Aspire One Cloudbook Is Powered by Windows 10
Samsung Let's You Pay From Your Smart TV
Hon Hai To Invest In India
Seagate Announces Game Drive for Xbox One and Xbox 360
New PC Accessories For Windows 10
Active Discussions
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
How to burn a backup copy of The Frozen Throne
Help make DVDInfoPro better with dvdinfomantis!!!
Copied dvd's say blank in computer only
menu making
Optiarc AD-7260S review
 Home > News > Mobiles > New Son...
Last 7 Days News : SU MO TU WE TH FR SA All News

Monday, February 20, 2012
New Sony LSIs for Mobile Communications Achieve A Data Transfer Rate of 6.3 Gbps


Japan's National University Corporation, Tokyo Institute of Technology and Sony have jointly developed a radio frequency LSI and a baseband LSI that enables millimeter-wave wireless data transfer at the world's fastest rate of 6.3 Gb/s.

This technological achievement will be presented at the International Solid-State Circuits Conference (ISSCC) held in San Francisco from February 19, 2012.

The demand for higher wireless communication speeds has led to a consequential increase in the need for more frequencies. The shortage of frequencies under 6 GHz has become an increasingly critical issue. Additionally, high quality sound and video require high bandwidth for inter-device data transmission.

The Tokyo Institute of Technology and Sony have jointly developed a millimeter-wave wireless data transfer technology that realizes both high-speed and low-power data transfer between mobile devices. Implementation of this technology will enable users to transmit and receive data at much higher speeds between mobile devices without the need for cable connections. This technology will also enable users to enjoy uncompressed high-quality video streaming from a mobile device to a display.

In this joint development, Sony designed the digital parts of the BB LSI and the chip unit as a whole, while the Tokyo Institute of Technology designed the RF LSI and the analog parts of BB LSI.

Sony says it has eveloped a high-efficiency and high-integrity Low-Density Parity-Check (LDPC - rate 14/15 ) error-correcting code, which significantly decreases the amount of redundant data that is required for error correction. The error-correction code, which uses a sparse parity-check matrix, has enabled LDPC decoding at the world?s lowest (for an LDPC decoder implemented in silicon) per-bit energy efficiency of 11.8 pJ/b (74 mW at 6.3 Gb/s). The specific LDPC code was also employed at the 60 GHz band millimeter-wave wireless communication standards (IEEE 802.15.3c).



A research team led by Professor Akira Matsuzawa and Associate Professor Kenichi Okada at the Tokyo Institute of Technology developed an RF LSI that functions as a 60 GHz band millimeter-wave direct-conversion transceiver (wireless transceiver directly converted from RF signal to base band signal). The RF LSI applies the 16 Quadrature Amplitude Modulation (16QAM) to the wireless signal and for every frequency channel defined under the 60 GHz band millimeter-wave wireless communication standards (IEEE 802.15.3c, ECMA-387 and ISO/IEC 13156)

This breakthrough has been achieved by a back-to-back layout structure of the injection locked oscillator (a technology generating a signal with a desired frequency by injecting a signal with another frequency into an oscillator). The analog-to-digital converter (ADC) on the BB LSI consumes just 12mW at a sampling rate of 2.3 G samples/s as an ADC integrated in a 60 GHz wireless chip. This was achieved by developing a simple comparator, which does not increase the signal conversion noise.

Part of this R&D was sponsored by the Japanese Ministry of Internal Affairs and Communications (MIC).


Previous
Next
OPTIMUS LTE TAG From LG Featues NFC        All News        Toshiba Circuit Technology Increases Power Efficiency Of CMOS Amplifiers For Mobile Phones
OPTIMUS LTE TAG From LG Featues NFC     Mobiles News      Toshiba Circuit Technology Increases Power Efficiency Of CMOS Amplifiers For Mobile Phones

Get RSS feed Easy Print E-Mail this Message

Related News
Sony's Midrange Xperia C5 Ultra and M5 Smartphones Come With Strong Cameras
Sony Profit Rises Following Demand For Mobile Cameras
Android Lollipop Rolls For the Xperia Z3 and Xperia Z2 Series
Sony Mobile and ZMP to Develop Enterprise Solutions that Utilize Autonomous Unmanned Aerial Vehicles
Sony's New Wireless Speakers Available In The U.S.
Sony Launches Crowdfunding Platform For Its Products
Android M Developer Preview Available for Xperia Devices
First Sony X900C and X910C Ultra-thin 4K Ultra HD TVs Launching
Sony Has Three New Cameras For You
Android 5.0, Lollipop Rolls for the Xperia Z Series, Android 5.1 coming for Xperia M2 and Xperia M2 Aqua
Sony Delivers New Entry-level Professional Camcorder, New 4K Laser Projection Options And Professional Laser and Lamp Projectors
Sony to Acquire Optical Archive As It Enters The Data Center Storage Market

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .