Thursday, April 02, 2015
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Facebook Introduces Riff And Scrapbook
The White House Targets Cyber Attackers With New Sanctions Program
Uber Files Complaints Against Service Bans
Yahoo Autos Is Launching Today
GoDaddy Enters The Wall Street
Amazon Button for Instant Product Ordering
Sony To Sell Olympus Shares
Tech Industry Enjoys April Fools' Day
Active Discussions
how to copy and move data files to dvd-rw
cdrw trouble
Need serious help!!!!
burning
nvidia 6200 review
Hello
Burning Multimedia in track 0
I'm lazy. Please help.
 Home > News > General Computing > Fujitsu...
Last 7 Days News : SU MO TU WE TH FR SA All News

Monday, September 26, 2011
Fujitsu Develops Distortion-Compensation Circuit For Fiber-Optic Transmission Systems


Fujitsu Limited, Fujitsu Laboratories Limited and Fujitsu Research and Development Center Co., Ltd. of China jointly announced their development of a digital signal processing algorithm to compensate for waveform distortions in signals transmitted by fiber-optic cables in long-haul transmission systems of 100 km or more.

Wavelength division multiplexed (WDM) fiber-optic transmission systems that can carry 100 Gbps per wavelength?more than ten times existing levels?are expected to go into volume commercial deployment around 2012, and R&D efforts are progressing to enable continuous capacity increases in the future.

When transferred over long distances of hundreds of kilometers by fiber-optic lines, ultrafast signals carrying data at speeds of 100 Gbps or more suffer from waveform distortion caused by nonlinear optical effects, making it difficult for the signal to be correctly received. This has prompted research into nonlinear compensation technology, which can restore the signal received with distortion to a clean waveform. Using conventional methods, however, the implementation of nonlinear compensation technology would require massive circuits with more than 100 million logic gates, and chips that include such compensation circuits are only expected to become feasible around 2020. Reducing the scale required of such circuits, therefore, has been a pressing issue.

In September of last year, Fujitsu developed a technology that would simplify these circuits, making them commercially viable as early as 2015. With the relentless growth in network traffic, however, ongoing improvements, in terms of circuits that are more compact and consume less electricity, are still needed. The Fujitsu team has now developed a new signal-processing algorithm that, while retaining the distortion-correction performance of the technology developed last year, slashes the number of stages required in a distortion-compensation processing circuit to about one-seventh current typical levels. Key features of this technology are as follows.

- As a result of approximation analysis, in which signal distortions are expressed as mathematical models, Fujitsu has been able to formulate distortion components that previous technologies have overlooked.

- Additional refinements to the above numerical modeling made it possible to develop an efficient design for accurate compensation, implemented in a small circuit. Adding this compensation circuit to the technology that Fujitsu developed in September last year resulted in a leap forward in the accuracy of distortion compensation and greatly reduced the number of circuit stages and overall size.

Compared to conventional technology in widespread use in literatures, the size and power requirements of the new circuit are reduced by approximately 85%, and are reduced by approximately 50% compared to circuits previously developed by Fujitsu.

For long-haul transmission systems that are used in the trunk-line networks of telecom carriers and networks that tie together large datacenters, the new circuit will enable ultrafast transmission systems operating at over 100 Gbps per wavelength to be more compact and consume less power than existing systems.

Some of this research was conducted as part of the "Universal Link Project R&D" sponsored by National Institute of Information and Communications Technology (NICT), Japan. Details of this technology are being presented at the 37th European Conference and Exhibition on Optical Communication (ECOC2011), opening September 18 in Geneva.

This technology is expected to be used in the next generation of long-haul optical transmission systems running at speeds in excess of 100 Gbps that are on track for implementation by around 2015. The technology is also being studied for potential applications in high-capacity short-range networks, such as those used in datacenters and access networks.


Previous
Next
Oracle to Integrate Canon's Imaging Technologies        All News        AMD Delivers Multi-Display Support On Latest Entry-Level Embedded Discrete GPU
Oracle to Integrate Canon's Imaging Technologies     General Computing News      Samsung to Take Bolder Stance in Apple Patent Battle

Get RSS feed Easy Print E-Mail this Message

Related News
Fujitsu Develops Thin Cooling Device For Smartphones
Fujitsu and Isuzu to Jointly Research Vehicle Systems
Fujitsu Technology Recognizes Faces Appearing In Low-Resolution Images
MWC: Fujitsu Delivers New Ruggedized Industrial Business Tablet
MWC: Fujitsu Develops Smartphone with Iris Authentication
Fujitsu Develops Optical Transceiver for 400 Gbps Inter-Processor Data Transmissions
Fujitsu Extends Its LIFEBOOK Line-up
Fujitsu Develops Wearable For Safer Driving, Technology That Identifies PC User Behaviors Vulnerable To Cyber Attacks
Fujitsu Develops Ring-Type Wearable Device That Lets You Write In The Air
Fujitsu Signs Collaborative Research Agreements with Medical Research Institutions
Fujitsu Introduces Two Tablets for Businesses
Fujitsu Develops Sensing Middleware to Simplify Development of Sensing Applications

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .