Sunday, February 14, 2016
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Researchers Download "Game Of Thrones" In Just 1 Second!
Apple: Dr. Dre Starring In New TV Series; New iPhone, iPad Coming in March
Foxconn Seeks For Partner To Boost Bid For Sharp
Micron Outlines Tts First 3D NAND Products
AT&T To Start 5G Trials This Year
Uber Agrees to Settle Safety Lawsuits
Google To Expand Right-to-Be-Forgotten Removals Following Pressure From Europe
Apple And At&T Sued For Infringement of Touch Feedback Patents
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
How to burn a backup copy of The Frozen Throne
Help make DVDInfoPro better with dvdinfomantis!!!
Copied dvd's say blank in computer only
menu making
 Home > News > General Computing > IBM Res...
Last 7 Days News : SU MO TU WE TH FR SA All News

Friday, June 10, 2011
IBM Researchers Unveil Nanotechnology Circuits for Wireless Devices


IBM Research scientists have achieved a milestone in creating a building block for the future of wireless devices. In a paper published yesterday in the magazine Science, IBM researchers announced the first integrated circuit fabricated from wafer-size graphene, and demonstrated a broadband frequency mixer operating at frequencies up to 10 gigahertz.

Designed for wireless communications, this graphene-based analog integrated circuit could improve today's wireless devices and points to the potential for a new set of applications. At today's conventional frequencies, cell phone and transceiver signals could be improved, potentially allowing phones to work where they can't today while, at much higher frequencies, military and medical personnel could see concealed weapons or conduct medical imaging without the same radiation dangers of X-rays.

Graphene, the thinnest electronic material consisting of a single layer of carbon atoms packed in a honeycomb structure, possesses outstanding electrical, optical, mechanical and thermal properties that could make it less expensive and use less energy inside portable electronics like smart phones.

Despite significant scientific progress in the understanding of this material and the demonstration of high-performance graphene-based devices, the challenge of integrating graphene transistors with other components on a single chip had not been realized until now, mostly due to poor adhesion of graphene with metals and oxides and the lack of reliable fabrication schemes to yield reproducible devices and circuits.

This new integrated circuit, consisting of a graphene transistor and a pair of inductors compactly integrated on a silicon carbide (SiC) wafer, overcomes these design hurdles by developing wafer-scale fabrication procedures that maintain the quality of graphene and, at the same time, allow for its integration to other components in a complex circuitry.

"Just a few days before IBM commemorates its 100th anniversary, our scientists have achieved a nanotechnology milestone which continues the company's century-long pursuit of innovation and technology leadership," said T.C. Chen, vice president, Science and Technology, IBM Research. "This research breakthrough has the potential to increase the performance of communication devices that enable people to interact with greater efficiency."

The breakthrough is also a major milestone for the Carbon Electronics for RF Applications (CERA) program, funded by DARPA.

In this demonstration, graphene is synthesized by thermal annealing of SiC wafers to form uniform graphene layers on the surface of SiC. The fabrication of graphene circuits involves four layers of metal and two layers of oxide to form top-gated graphene transistor, on-chip inductors and interconnects.

The circuit operates as a broadband frequency mixer, which produces output signals with mixed frequencies (sum and difference) of the input signals. Mixers are fundamental components of many electronic communication systems. Frequency mixing up to 10 GHz and excellent thermal stability up to 125 degrees C has been demonstrated with the graphene integrated circuit.

The fabrication scheme developed can also be applied to other types of graphene materials, including chemical vapor deposited (CVD) graphene films synthesized on metal films, and are also compatible with optical lithography for reduced cost and throughput.

Previously, the team has demonstrated standalone graphene transistors with a cut-off frequency as high as 100 GHz and 155 GHz for epitaxial and CVD graphene, for a gate length of 240 and 40 nm, respectively.


Previous
Next
Sony Delivers New 3D Front Projector        All News        Intel, Samsung and Toshiba Continue to Lead The Semiconductor Market
EU To Set up Computer Emergency Response Team for EU Institutions     General Computing News      Intel, Samsung and Toshiba Continue to Lead The Semiconductor Market

Get RSS feed Easy Print E-Mail this Message

Related News
Western Digital Buys Storage And Memory Patents From IBM
IBM Forecasts Weak Earnings For 2016
IBM Remains First In Patents, Study Finds
IBM Opens Watson IoT Global Headquarters In Germany
IBM’s Watson Forecasts Products for Holiday Season
IBM, Xilinx target Intel With Chip Collaboration
IBM To Buy The Weather Company's Product and Technology Businesses
IBM Takes On Intel's x86 Systems With New Linux Servers
Research Breakthrough Paves Way for Post-Silicon Future
IBM and ARM Collaborate to Accelerate Delivery of Internet of Things
IBM Unveils Linux Mainframe System
Watson to Gain Ability to See with Acquisition of Merge Healthcare

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2016 - All rights reserved -
Privacy policy - Contact Us .