Sunday, December 21, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Samsung Introduces SE790C Curved Monitor
Chinese Motion-sensing VR Glasses Coming On Kickstarter
Kodak Returns To CES With Consumer Product Line
North Korea Suggests Joint Inverstigation With U.S. Over Sony Hacking
T-Mobile to Pay $90 Million To Settle Case With FCC
New Trojan Targetted Banks Wordlwide
FBI Confirms North Korea Was Behind Sony Hack
Apple Responds To BBC's Allegations Over Working Conditions In Chinese Factory
Active Discussions
Digital Audio Extraction and Plextools
Will there be any trade in scheme for the coming PSP Go?
Hello, Glad to be Aboard!!!
Best optical drive for ripping CD's? My LG 4163B is mediocre.
Hi All!
cdrw trouble
CDR for car Sat Nav
DVD/DL for Optiarc 7191S at 8X
 Home > News > PC Parts > Intel C...
Last 7 Days News : SU MO TU WE TH FR SA All News

Thursday, June 24, 2010
Intel Claims GPUs Are Only Up To 14 Times Faster Than CPUs


Intel presented a technical paper where they showed that application kernels run up to 14 times faster on a NVIDIA GeForce GTX 280 as compared with an Intel Core i7 960.

The paper, entitled "Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU" was presented by Intel at the International Symposium on Computer Architecture (ISCA) in Saint-Malo, France.

Processing the ever-growing data in a timely manner has made throughput computing an important aspect for emerging applications. According to Intel's analysis of a set of important throughput computing kernels, there is an ample amount of parallelism in these kernels which makes them suitable for today's multi-core CPUs and GPUs.

In the past few years there have been many studies claiming GPUs deliver substantial speedups (between 10X and 1000X) over multi-core CPUs on these kernels. To understand where such large performance difference comes from, Intel performed a performance analysis and find that after applying optimizations appropriate for both CPUs and GPUs the performance gap between an Nvidia GTX280 processor and the Intel Core i7-960 processor narrows to only 2.5x on average.

In the paper, Intel also discussed optimization techniques for both CPU and GPU, analyze what architecture features contributed to performance differences between the two architectures, and recommend a set of architectural features which provide improvement in architectural efficiency for throughput kernels.

Commenting on the Intel's paper, Andy Keane Nvidia's General Manager GPU Computing wrote at the company' blog:

"It?s a rare day in the world of technology when a company you compete with stands up at an important conference and declares that your technology is *only* up to 14 times faster than theirs. In fact in all the 26 years I?ve been in this industry, I can?t recall another time I?ve seen a company promote competitive benchmarks that are an order of magnitude slower."

Keane said Intel used Nvidia's previous generation of GPU, the Nvidia GTX280 processor for the study and that the codes that were run on the GTX 280 were run right out-of-the-box, without any optimization. In fact, it?s actually unclear from the technical paper what codes were run and how they were compared between the GPU and CPU.

However, Keane admitted that "the 100x GPU vs CPU Myth" claim is true.

"Not *all* applications can see this kind of speed up, some just have to make do with an order of magnitude performance increase," he said. "But, 100X speed ups, and beyond, have been seen by hundreds of developers," he added, giving exanples developers that have achieved speed ups of more than 100x in their applications.

"The real myth here is that multi-core CPUs are easy for any developer to use and see performance improvements, Nvidia's representative said.

"Undergraduate students learning parallel programming at M.I.T. disputed this when they looked at the performance increase they could get from different processor types and compared this with the amount of time they needed to spend in re-writing their code. According to them, for the same investment of time as coding for a CPU, they could get more than 35x the performance from a GPU. Despite substantial investments in parallel computing tools and libraries, efficient multi-core optimization remains in the realm of experts like those Intel recruited for its analysis. In contrast, the CUDA parallel computing architecture from NVIDIA is a little over 3 years old and already hundreds of consumer, professional and scientific applications are seeing speedups ranging from 10 to 100x using NVIDIA GPUs."

Keane added that industry experts and the development community are voting by porting their applications to GPUs.

Interestingly enough, Nvidia's Chief Scientist Bill Dally received the 2010 Eckert-Mauchly Award for his pioneering work in architecture for parallel computing at the same event.


Previous
Next
Windows Live Essentials Beta Available For Download        All News        Internet Explorer Platform Preview 3 Released Today
iSuppli Ranks Kingston as Top Memory Maker in 2009     PC Parts News      Lexar Media Ships 64GB Crucial RealSSD C300

Get RSS feed Easy Print E-Mail this Message

Related News
Intel, IBM Follow Different Strategies On 14nm FinFET
Intel Unifies and Simplifies Connectivity for IoT
TSMC To Make Intel's SoFIA Handset Chips
Intel to Invest in China Factory
Intel and Luxottica To Collaborate On Smart Eyewear
Intel Offers Professor Stephen Hawking Ability to Better Communicate
Intel Acquires Security Firm PasswordBox
Samsung Files ITC Complaint Against Nvidia
Intel To Release Chromecast-like Thumb-sized PCs
Intel Gives Upbeat Outlook for 2015 Revenue
Intel Labs Showcase Low-energy DRAM Memory
Intel to Merge Mobile Business With PC Division

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .