Thursday, January 29, 2015
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Mobile Provider TracFone to Pay $40 Million to Settle FTC Charges
Intel Releases New 20nm SSDs For Data Centers
Microsoft Brings Office To iOS and Android Devices
LG Electronics Q4 Net Loss Widens, Full Year Profit Soars
Samsung Reports Weak Q4 Results
Compal To Take Over Toshiba's TV Business
Facebook Reports Strong Fourth Quarter
Qualcomm Cuts Fiscal 2015 Outlook On Lower Chip Demand
Active Discussions
Writing Audio files on DVDs ?
Need major help with Gigabeat
New match-3 puzzle game launch now!
Rimage 2000i
Sound card for my Laptop
hello
full screen wide screen
Hi
 Home > News > General Computing > Fujitsu...
Last 7 Days News : SU MO TU WE TH FR SA All News

Thursday, June 17, 2010
Fujitsu's Technology Paves The Way For Commercialization of MRAM


Fujitsu Laboratories Limited today announced the development of a new memory cell circuit for spin-torque-transfer MRAM that enable a space savings of 60% and achieve a greater degree of integration than was previously possible.

Spin-torque-transfer MRAM is regarded as a next-generation non-volatile memory with high potential to become a replacement for NOR-type flash memory, since its compact in size, consumes less power and offers higher performance.

Currently, microcontrollers for mobile phones and PDAs typically employ NOR-type flash memory, which is approaching its physical limits of miniaturization - however, there is continuous demand for further miniaturization of such non-volatile memory for microcontrollers in handheld electronic devices, as the devices continually become smaller. As a result, spin-torque-transfer MRAM has gained a great deal of attention as a potential successor to NOR-type flash memory, as spin-torque-transfer MRAM can conserve space, and there has been a significant amount of research aimed at its practical implementation. Fujitsu's new technology was used to reduce the area of memory cell circuits by 60%, thus enabling a higher degree of integration unattainable with previous spin-torque-transfer MRAMs, resolving one of the technology's key technical implementation challenges for practical use. As a result, the technology paves the way for microcontrollers embedded with spin- torque-transfer MRAM that are more compact, and which can run applications more quickly than microcontrollers embedded with NOR-type flash memory.

Details of the novel technology will be presented at the 2010 Symposium on VLSI Technology (2010 VLSI), held in Honolulu, U.S. from June 15-17 (Presentation number: 5.2).

Background

Spin-torque-transfer MRAM is a memory storage element that makes use of the phenomenon in which passing a current through a magnetic material causes its direction of magnetization to reverse. Passing a current through the material causes the direction of magnetization to either be in a parallel or anti-parallel state. This high or low electrical resistance can be handled in terms of binary digital information, either 1 or 0, enabling the storage element to be used as non-volatile magnetic memory (Figure 1).



While it has been possible to miniaturize MTJ elements used in spin-torque-transfer MRAM, shrinking the adjoining cell-select transistors had thus far posed a challenge.

The memory cell circuit in spin-torque-transfer MRAM is a circuit that connects the MTJ element with a cell-select transistor, which act as switches that select which MTJ elements to write to or read from. With existing memory cell circuits, when the MTJ element of a spin-torque-transfer MRAM has been written to a high-resistance state ("1"), voltage is lowered through variable resistance - this requires a larger current to write than when an MTJ element it is switched to a low resistance state ("0"), which is not affected by variable resistance. In other words, because the cell-select transistor's current-driving capability is low, writing to a high-resistance state ("1") would require a significant current. As such, even with a low driving-current capability, cell-select transistors need to be relatively large to ensure an adequate write current, which has been a barrier to reducing transistor size.



Fujitsu Laboratories has reversed the order of the MTJ element's magnetic layers, enabling the development of a new MTJ element with a top-pinned structure - that differs from previous structures - that consists of a pinned layer, tunnel barrier, and free layer. However, because the distance between the tunnel barrier of the top-pinned MTJ element and its bottom electrode has been reduced, electrical short failures are more likely to occur during fabrication - as a countermeasure to address this issue, Fujitsu Laboratories has inserted a buffer layer to maintain separation between the tunnel barrier and bottom electrode, which allows the output from the low-resistance ("0") writing to travel in the same direction as the cell-select transistor's low driving-current capacity, thus making it possible for the cell-select transistor to still function at a smaller size.



Previous
Next
TSMC To Reportedly Produce AMD's Ontario Chips        All News        Nvidia Released vReveal 2.0
Music Publishers File Infringement Suit Against LimeWire     General Computing News      YouTube Video Editor Allows You To Edit Your Video in the Cloud

Get RSS feed Easy Print E-Mail this Message

Related News
Fujitsu Extends Its LIFEBOOK Line-up
Fujitsu Develops Wearable For Safer Driving, Technology That Identifies PC User Behaviors Vulnerable To Cyber Attacks
Fujitsu Develops Ring-Type Wearable Device That Lets You Write In The Air
Fujitsu Signs Collaborative Research Agreements with Medical Research Institutions
Micron and ASTAR Data Storage Institute Renew Research Collaboration On STT-MRAM
Fujitsu Introduces Two Tablets for Businesses
Fujitsu Develops Sensing Middleware to Simplify Development of Sensing Applications
Fujitsu Develops LED Lighting Technology that "Shines" Data on Objects
Fujitsu Develops Design Technology for Allocating LTE-Advanced Base Stations
Globalfoundries Invests In MRAM Maker Everspin
Fujitsu Launches Petabyte-scale New Hyper-scale Storage ETERNUS CD10000
Fujitsu Boosts Lineup of Smartphones and Tablets for the Enterprise

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .