Saturday, April 21, 2018
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Apple to Replace Some MacBook Pro Laptop Batteries
ZTE's Nubia Red Gaming Phone Released
LG Display's OLED Smartphone Screens Still Not Ready For Apple
Nintendo Labo Kits Now Available
June's VLSI Symposium Focuses on Next Generation Transistor Technology and MRAM
Samsung Not Interested in Nokia's Health Unit
ZTE Says Company's Survival at Risk
2nd Generation AMD Ryzen Desktop Processors Arrive to Offer Great Value
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > Toshiba...
Last 7 Days News : SU MO TU WE TH FR SA All News

Wednesday, December 09, 2009
Toshiba Develops High Performance CMOS Device Technology for 20nm Generation LSI


Toshiba today announced that it has developed a breakthrough technology for steep channel impurity distribution that delivers a solution to a key problem for 20nm generation CMOS technology.

The technology opens the door to a future generation of LSI fabricated with bulk CMOS technology, the mainstream technology in today's LSI, by achieving the first practical fabrication process applicable to 20nm generation CMOS devices.

Toshiba unveiled the new technology at the 2009 International Electron Devices Meeting (IEDM) held in Baltimore, Maryland, U.S.A. from December 7 to December 9, one of the semiconductor industry's leading international conferences.

Today's bulk CMOS technology is seen as facing physical limits at around the 20nm generation. Problems such as degradation in electron mobility in the channel area and variation in threshold voltage will become obvious at that scale. These problems can be overcome by realizing a steep impurity distribution in the channel area, a structure that requires a low impurity density surface layer and a high impurity density substrate layer. This structure contributes better gate electrode control over the low-resistance area on the surface by obtaining fine switching of the current.

R&D in steep channel impurity profiles has largely been limited to the partial optimization of nMOS transistors, in which channel impurities easily diffuse, and effective technologies that can secure the overall CMOS performance in the 20nm generation has been a big challenge. As a result, the industry's attention has been directed to new materials or device structures, such as SOI wafers and a 3D gate structure. However, these solutions may result in new process steps that require extra facility investment or that lower productivity. Toshiba's newly developed technology , which is applicable to both the nMOS and pMOS transistors of CMOS devices, opens the way to taking bulk CMOS technology forward to the 20nm generation.

The following technologies are necessary to create a steep channel profile:

(a) A silicon layer formed on the surface of the channel after introducing impurities into the channel area.
(b) A structure that prevents impurity diffusion to the surface due to thermal budget generated during the fabrication process.
(c) Optimization of materials and structures so that the channel functions effectively.

To develop a CMOS device, these technologies are necessary for both the nMOS and pMOS transistors. Although optimization of nMOS has been already achieved, integration of CMOS devices with optimized pMOS has not followed.

Toshiba has extended the nMOS results to develop both nMOS and pMOS devices as shown below. Performance has been confirmed to be 15 to 18% higher than that achieved with the conventional channel structure.



Key points are in the followings;

(1) A boron-doped Si:C layer is formed in advance of the Si:C interlayer formation. For the pMOS device, arsenic is used to dope the channel.
(2) An Si:C interlayer is formed for both the nMOS and pMOS devices.
(3) Finally, a silicon layer is formed on the channel surface by epitaxial growth, for both the nMOS and pMOS devices.

Toshiba has optimized both the materials and the structures to realize an efficient fabrication process. Arsenic has been confirmed as a potential candidate for the pMOS channel impurity. In the pMOS device, unwanted fixed charge accumulation in the gate insulator, due to the carbon in the Si:C layer, is resolved by adding a boron-doped silicon layer under the Si:C layer. This result is achieved by making efficient use of the interaction between carbon and boron.


Previous
Next
Hitachi Acquires Software Assets Related to Next-Generation Mobile Communication Systems From Nortel        All News        Google Releases Chrome for Mac, Linux, Opens "Living Stories"
WHDI Releases 1.0 Specification     General Computing News      Google Releases Chrome for Mac, Linux, Opens "Living Stories"

Get RSS feed Easy Print E-Mail this Message

Related News
Toshiba Releases New Surveillance, Video Streaming Laptop and Desktop Hard Drives
China Opposes SK hynix-Toshiba Deal
Toshiba Delays Memory Chip Unit Sale
Toshiba Memory to Make New Investment in Production Equipment for Fab 6 at Yokkaichi Operation
Toshiba Launches KumoScale NVM Express over Fabrics Storage Software for Cloud Infrastructures
Toshiba Adds 64-layer BiCS CD5, XD5 and HK6-DC Models to Data Center SSD Lineup
Western Digital to Inject $4.6bn in Toshiba Memory
Toshiba Completes Transfer of its TV Business to Chinese Hisense Group
Toshiba Releases 2TB Hard Disk Drive for Notebooks
Samsung's Newest ISOCELL Image Sensor Enables Mobile Devices to 'Slow Down' Time
Panasonic Develops 8K Global Shutter Technology Using Organic-Photoconductive-Film CMOS Image Sensor
New Sony Back-Illuminated CMOS Image Sensor Enables Global Shutter Function

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2018 - All rights reserved -
Privacy policy - Contact Us .