Wednesday, July 30, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
AMD Opteron 64-Bit ARM-Based Developer Kits Now Available
Samsung Galaxy Note 4 Coming On September 3
Google To Show Ratings to Search-Results Ads
Samsung And Apple See Their Smartphone Market Shares Plunging
Twitter Says Its User base Increased
Microsoft Details Windows Phone 8.1 Update, Brings Cortana To New Markets
Facebook to Shut Down Gifts Service
Netflix To Pay AT&T For Smooth Video Delivery
Active Discussions
help questions structure DVDR
Made video, won't play back easily
Questions durability monitor LCD
Questions fungus CD/DVD Media, Some expert engineer in optical media can help me?
CD, DVD and Blu-ray burning for Android in development
IBM supercharges Power servers with graphics chips
Werner Vogels: four cloud computing trends for 2014
Video editing software.
 Home > News > General Computing > New Sha...
Last 7 Days News : SU MO TU WE TH FR SA All News

Thursday, October 22, 2009
New Sharp Solar Cell Features The World's Highest Conversion Efficiency


Sharp has achieved the world's highest solar cell conversion efficiency of 35.8% using a triple-junction compound solar cell.

Unlike silicon-based solar cells, the most common type of solar cell in use today, the compound solar cell utilizes photo-absorption layers made from compounds consisting of two or more elements such as indium and gallium. Due to their high conversion efficiency, compound solar cells are used mainly on space satellites. Since 2000, Sharp has been advancing research and development on a triple-junction compound solar cell that achieves high conversion efficiency by stacking three photo-absorption layers.

To boost the efficiency of triple-junction compound solar cells, it is important to improve the crystallinity (the regularity of the atomic arrangement) in each photo-absorption layer (the top, middle, and bottom layer). It is also crucial that the solar cell be composed of materials that can maximize the effective use of solar energy.

Conventionally, Ge (germanium) is used as the bottom layer due to its ease of manufacturing. However, in terms of performance, although Ge generates a large amount of current, the majority of the current is wasted, without being used effectively for electrical energy. The key to solving this problem was to form the bottom layer from InGaAs (indium gallium arsenide), a material with high light utilization efficiency. However, the process to make high-quality InGaAs with high crystallinity was difficult.



Sharp has now succeeded in forming an InGaAs layer with high crystallinity by using its proprietary technology for forming layers. As a result, the amount of wasted current has been minimized, and the conversion efficiency, which had been 31.5% in Sharp?s previous cells, has been successfully increased to 35.8%.

Based on these results, Sharp will continue its efforts toward even greater improvements in solar cell conversion efficiency.


Previous
Next
RIM Introduces the New BlackBerry Bold 9700 Smartphone        All News        Acer Introduces New Aspire 3-D Laptop
Microsoft Releases Windows 7     General Computing News      Google and Microsoft To Integrate Twitter Into Search

Get RSS feed Easy Print E-Mail this Message

Related News
Sharp Develops Brighter LED for LCD Backlights
Sharp to Exit TV And Home Appliance European Markets
Sharp Develops Free-Form Display
Sharp Introduces new 4K Video Recorder
Sharp Blames Yen For Profit Drop
Sharp To Start Mass Producing Ultra-high Resolution LCDs
Sharp Improves LCD Viewing Angle With New Optical Film
Sharp Reports Improved Results
Sharp Unveils 15.6-inch Windows 8.1 Tablet, 70-inch Big Pad
Sharp Introduces Quattron+ TVs
Sharp Delivers Wireless Audio and Full HD Video With WiSA-Compliant Universal Player
Sanyo Settles LCD Patent Dispute With Sharp

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .