Friday, August 22, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
German Regulator Will Pursue Complaint Against Publishers
IBM Tries To Strengthen Its Presence In China With Local Vendor Deal
Demand For iPhone 6 Screens Add Perssure To Supply Chain
Intel Highlights Its Wireless Computing Plans
Ouya Parners With Xiaomi On Games
Sony Offers New Smart Tennis Sensor
Microsoft to Announce Windows 9 on September Event: report
Acer Unveils New Chromebox CXI and Chromebook 11
Active Discussions
help questions structure DVDR
Made video, won't play back easily
Questions durability monitor LCD
Questions fungus CD/DVD Media, Some expert engineer in optical media can help me?
CD, DVD and Blu-ray burning for Android in development
IBM supercharges Power servers with graphics chips
Werner Vogels: four cloud computing trends for 2014
Video editing software.
 Home > News > General Computing > Fujitsu...
Last 7 Days News : SU MO TU WE TH FR SA All News

Wednesday, June 24, 2009
Fujitsu Develops First Gallium-Nitride HEMT for Power Supply


Fujitsu Laboratories Ltd. today announced the development of a new structure for gallium-nitride high electron-mobility transistors (GaN)(HEMT) that can minimize power loss in power supplies, thus enabling reduced power consumption of electronic equipment such as IT hardware and home electronics.

The new technology blocks the flow of current from power supplies in stand-by mode and produces high-density current when turned on (on-state current) and has the potential to cut power consumption of electronic equipment by one-third. If applied to data centers, Fujitsu's new GaN HEMT would be able to reduce total power consumption by 12%, thereby resulting in the effect of removing 330,000 tons of CO2 from Japan as a whole.

Details of this technology were presented at the Device Research Conference 2009 (DRC 2009) being held at Penn State University in University Park, Pennsylvania, U.S. from June 22 to 24.

Background

With environmental protection being an increasingly important priority in technology development, and as part of Fujitsu's Green Policy Innovation initiative to help customers reduce their environmental burden footprint, Fujitsu has made power-saving technologies a focus of its R&D efforts. Due to the fact that the amount of electricity consumed by IT hardware, home electronics, and car electronics all have a direct impact on CO2 emissions, reducing power consumption is a high priority throughout the industry. For power supplies used in electronic hardware, power lost as heat can account for 30% or more of the total power consumed by the device. Furthermore, waste heat creates the need for additional cooling equipment, thus resulting in a ripple effect of increased power consumption.

Power supplies take the alternating-current (AC) power from a wall outlet and convert it to the stabilized direct-current (DC) power that electronics require. As the AC power from public utilities can be erratic in quality, voltage is first stabilized and then reduced, and finally the voltage is converted to DC. Circuitry that reduces the voltage uses transistors to quickly switch between a state that passes current, and one that blocks it, using the resulting high-frequency AC power. While power supplies have typically used silicon transistors, silicon transistors suffer from some power loss, known as "on-state loss" when passing current, as well as considerable power loss when switching between on and off states, known as "switching loss", such that transistor-related losses account for more than one-third (1/3) of all power loss that occurs in a power supply. This issue has sparked efforts to develop new transistors and circuits with low power loss.



Transistors made of materials with high breakdown-voltages are effective in reducing on-state loss - this is attributable to the fact that transistors made with high breakdown-voltages can be designed with closely spaced electrodes, resulting in lower power loss when passing current. GaN HEMTs are one type of transistor featuring high breakdown-voltage that has attracted much attention in recent years. GaN HEMTs have less than one-fifth (1/5) the on-state loss of silicon transistors and have excellent high-speed characteristics, so that switching losses are less than 1% of those of silicon transistors.

A desirable characteristic for power supplies used in products such as PCs, home appliances, and automobiles is a complete current-interruption in stand-by mode, in which no voltage is being applied to the gate electrodes. Conventional GaN HEMTs have required a negative gate voltage to be applied when in stand-by mode. In 2008, Fujitsu Laboratories developed a new 3-layer cap structure for GaN HEMTs - by sandwiching an aluminum-nitride (AlN) layer between n-type GaN layers - which can suppress the current when in stand-by (Figure 2). The new GaN HEMT structure was originally developed for wireless transmission amplifiers; however, because the voltage that was applied at the gate electrode in order to switch between on and off states ("turn-on voltage") was in the range of 0.5 V, it could not be used for power supplies, which need to apply +2 to +4 V in order to apply hundreds of volts at the drain. In addition, power supplies effectively need to have an on-state current density of at least 600 milli-amps/millimeter (600 mA/mm).

In addition to its GaN HEMT with the three-layer (3-layer) cap structure, Fujitsu made the two following advances in GaN HEMT technology.

A technology was developed for precise removal of the cap layers and a part of the AlGaN layer only below the gate electrode. By leaving a thin n-type AlGaN layer on the GaN carrier layer, while suppressing damage to the GaN layer, on-state voltage can be increased beyond +2 V while preserving the total interruption in stand-by, enabling high-speed performance when turned on. A gate structure was developed that uses an insulated gate structure with an atomic layer-controlled oxide film having atom-level flatness. Because this suppresses gate leak current in which travelling electrons flow to the gate electrode when turned on, a positive voltage can be applied to the gate electrode, resulting in high on-state current density.

The on-state voltage of the new transistor reaches +3 V, which can easily be applied to power supplies while achieving a current density of 829 mA/mm - double that of the transistor design on which the new transistor is based (Figure 2) - results in high current values. Among transistors that can achieve an on-state voltage of at least +2 V and completely interrupt current when off, Fujitsu's new transistor features the world's highest on-state current density, making it the first GaN HEMT in the world that has the characteristics required for power supply.

With the new transistor in power supplies, power loss can be reduced to one-third (1/3) that of power supplies based on conventional silicon transistors. Extrapolated to all of the data centers in Japan - and taking into account the knock-on benefits of energy savings enabled through reduced air-conditioning electricity required for cooling - this development would reduce data-center power consumption in Japan by 12%, which could be expected to reduce Japan's total CO2 emissions by 330,000 tons.

Additionally, the high-frequency performance of Fujitsu's new transistors would enable more compact power supplies. High-speed transistor operation would allow for more compact coils and transformers, which have been particularly difficult to miniaturize in conventional power supplies with low-frequency operation: the size of AC adapters for notebook PCs, for example, could be reduced to one-tenth current sizes. Smaller power supplies would contribute to reducing pace requirements for data centers, as well.

Fujitsu is progressing with practical implementations of GaN transistors featuring high breakdown-voltages, with the aim of producing power supplies based on them by approximately 2011.


Previous
Next
New Asus Eee PC 1005HA Seashell With Over 10 Hours of Battery Life        All News        USB Market Will Get SuperSpeed Boost After Slower 2009: In-Stat
The New Windows 7 Packaging     General Computing News      Microsoft Security Essentials Beta Announced

Get RSS feed Easy Print E-Mail this Message

Related News
Fujitsu, Panasonic Announce New Direction for Their Semiconductor Businesses
Fujitsu To Phase Out Chip Production
Fujitsu Technology Reduces Network Switches in Cluster Supercomputers
New Fujitsu ARROWS Tab Q335/K Tablet Coming In October
Fujitsu Buys Shares of Panasonic Information Technology Solutions
Fujitsu Launch New Enterprise Laptop PCs
Fujitsu Develops Record-Breaking 56 Gbps Receiver For Communications Between CPUs
Fujitsu Launches The ARROWS NX F-05F Smartphone
Fujitsu Introduces ETERNUS DX200F Flash Array
Fujitsu Software Cuts Response Times to Cyber Attacks
Fujitsu Launches New GS21 Series Mainframes Featuring New Processors
New Fujitsu LIFEBOOK E Professional Notebooks Delivers Functionality and Security

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .