Tuesday, February 20, 2018
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Hatch Entertainment to Use Qualcomm Centriq 2400 Processors For Cloud Gaming Service
Qualcomm Sweetens Offer for NXP
KT, Qualcomm and Samsung Achieve Multi-vendor 5G NR Interoperability on Path to Mobile 5G NR Trials
Sony to Build Taxi-hailing System
Samsung to Cut OLED Panel Production as iPhone X Demand Slows: report
Samsung Electronics Begins Mass Production of 30.72TB SSD
Microsoft Reveals Windows 10 on ARM Limitations
Fujitsu to Showcase Quantum-Inspired, Digital Annealer Computational Architecture at Mobile World Congress 2018
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > TSMC Re...
Last 7 Days News : SU MO TU WE TH FR SA All News

Wednesday, June 17, 2009
TSMC Reports Foundry's First 28 Nanometer Low Power Platform Technology with Fully Functional 64Mb SRAM


Taiwan Semiconductor Manufacturing Company today announced it has successfully developed the first 28-nanometer (nm) low power technology that continues the scaling trend and extends Silicon Oxynitride (SiON)/poly usage beyond 32 nanometer with a dual/triple gate oxide process.

Other characteristics from this technology includes high density and low Vcc_min 6-T SRAM cells, low leakage transistors, well-proven conventional analog/RF/electrical fuse components and low-RC Cu-low-k interconnect. This development was presented today in a paper at the 2009 Symposia on VLSI Technology and Circuits in Kyoto, Japan.

Additionally, the paper reports good 64Mb SRAM functional yield with a competitive cell size of 0.127 um˛, and a raw gate density as high as 3900 kGate/mm˛ in this 28nm dual/triple gate oxide SoC technology. Good SRAM Vcc_min, electrical fuse, and analog performance have also been achieved which proves the manufacturability of this technology.

In the paper presented, low standby and low operating power transistors using SiON optimized with strain engineering and aggressive oxide thickness provide up to 25~40% speed improvement or 30~50% active power reduction over prior 45nm technology.

"This development was achieved through close collaboration with customers who are pushing their own boundaries of new applications requiring 28nm technology," said Dr. Jack Sun, vice president R&D at TSMC.

In the previous announcement made in September 2008, TSMC plans to deliver its 28nm process in early 2010 as a full node technology offering options of power-efficient high performance and lower power technologies. TSMC is now on track to deliver 28nm technology platforms to its customers.


Previous
Next
Patriot's Launches 128GB Magnum USB Flash Drive        All News        Nero Summer Promotion: Nero 9 Plus Unlimited MP3 and Video Downloads
NEC and Toshiba Extend 28nm Chip Technology Development Agreements with IBM     General Computing News      GLOBALFOUNDRIES Details Advanced Technology Aimed at 22nm and Beyond

Get RSS feed Easy Print E-Mail this Message

Related News
TSMC Breaks Ground on 5nm Fab 18 in Southern Taiwan Science Park
TSMC Could Outpace Samsung in 7nm Volume Production This Year
TSMC to Invest $20bn in 3nm Chip Plant
Samsung Foundry in Advanced Discussions With New Customers for 7nm Chips
Apple Praises TSMC's Investments, Says iPhones Will be AI an Platform
TSMC Raises Forecasts for 2017 Due to 10nm Demand, Outlines 7 and 5nm Roadmap
TSMC Chairman Dr. Morris Chang to Retire
TSMC to Build 3nm Fab in Taiwan
Globalfoundries Asks EU to Probe TSMC
TSMC Updates its Roadmap, Talks About First 7nm Chips and EUV Migration
TSMC InFO packaging Enters Second Generation
TSMC Q2 Sales Slowed as Industry Expects the iPhone Launch

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2018 - All rights reserved -
Privacy policy - Contact Us .