Thursday, March 26, 2015
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
New HEVC Patent Pool Launched
Micron and Intel Unveil New 3D NAND Flash Memory
Amazon Cloud Drive Now Offers Unlimited Storage
Twitter Launches Periscope Live Video Streaming App
3DMark Adds API Overhead Feature-set
New HTC One M9 Goes On Sale Today
Apple Rumored To Release New iPhones Later This Year
DVDFab Loses Legal Battle Against AACS LA
Active Discussions
how to copy and move data files to dvd-rw
cdrw trouble
Need serious help!!!!
burning
nvidia 6200 review
Hello
Burning Multimedia in track 0
I'm lazy. Please help.
 Home > News > General Computing > Toshiba...
Last 7 Days News : SU MO TU WE TH FR SA All News

Monday, June 15, 2009
Toshiba Develops a New High-k/Ge Gate Stack Technology for LSIs at 16nm Node and Beyond


Toshiba today announced a significant advance in the development of a gate stack and interlayer with high carrier mobility that can be applied to advanced metal-insulator-semiconductor field-effect transistors (MISFETs) in future generations of LSIs.

The ultra-thin, Equivalent Oxide Thickness (EOT) -scalable high-k/Ge gate stack with strontium germanide (SrGex ) interlayer with high carrier mobility is a basic technology with potential for application in MISFETs at the 16 nm node and beyond. The technology will be presented today during Session 4B of the 2009 VLSI Symposia in Kyoto, Japan.

Current MISFET uses silicon for the channel, but physical limitations of silicon will make it difficult to obtain sufficient drive current in future scaled down MISFETs. Germanium (Ge) has long been known as an alternative offering higher carrier mobility characteristics, but significant technical challenges exist in implementing germanium in LSIs. Development of gate stack structures for Ge-MISFETs is one of the challenges. There are reports of achieving high hole mobility by adopting germanium dioxide (GeO2 ) in the gate stack insulating layer, but due to its low dielectric constant, there still remains the challenge of reducing the EOT to 0.5 nm, which is required for the 16 nm node and after.

Toshiba has achieved a technology that overcomes the twin challenges of fabricating a thin gate stack while maintaining high hole mobility, by inserting SrGex , a compound of strontium (Sr) and germanium, as an interlayer between the high-k insulating layer and the germanium channel.

Germanium is first subject to heat surface treatment in an ultra-high vacuum, and a layer of strontium of up to ten atoms is deposited on the surface of the germanium, followed by a lanthanum aluminate (LaAlO3 ) high-k film. Finally, the gate stack is annealed in a nitrogen atmosphere. The SrGex layer is formed during these processes, between the high-k film and the germanium channel.

The new technology realizes peak hole mobility of 481 cm2 /Volt second (Vsec), a record high value for high-k/Ge p-MISFETs. This value is over three times than that obtained without the SrGex interlayer, and over twice the universal mobility that can be realized with silicon (based on comparison with the same gate field).

Toshiba also confirmed that a gate stack structure with EOT as thin as around 1 nm was successfully formed, and that the increase in EOT by inserting the SrGex interlayer was only 0.2 nm at the most. This suggests the possibility of further EOT scaling to 0.5 nm, either by reducing thickness of an overlaying high-k layer or adopting a high-k layer with a higher dielectric constant.

Toshiba will continue to develop the technology as an option toward implementation of Ge-MISFET to 16 nm LSIs and beyond.

Development of this new gate stack process technology was supported by grants from Japan's New Energy and Industrial Technology Development Organization (NEDO).





Previous
Next
Samsung Adds New Models to Its S Series External Hard Drive Lineup        All News        Rambus Reaches Tentative Settlement with European Commission
Virgin and Universal Music to Offer Unlimited MP3 Downloads in UK     General Computing News      Rambus Reaches Tentative Settlement with European Commission

Get RSS feed Easy Print E-Mail this Message

Related News
Toshiba, Sandisk, Develop First 48-layer 3D NAND For SSDs
Toshiba Expands Line-up of eMMC Version 5.1 Embedded NAND Flash Memory Products
Toshiba Starts Production of 13-Megapixel CMOS Image Sensor With "Bright Mode" Video Technology
Toshiba Expands Internal and External Desktop Hard Drive Lineup With New 6TB Models
Toshiba Debuts 12.0 Gbps SAS HDD
Toshiba Starts Shipping 20-Megapixel CMOS Image Sensor For Mobile Devices
New Toshiba Smartwatch Reference Model features Bluetooth connectivity and Qi Wireless Charging
Toshiba Develops STT-MRAM Circuit For High-performance Processors
Toshiba Develops Multicore SoC For Image-Recognition Applications
Toshiba Launches 8 Megapixel CMOS Image Sensor for Smartphones and Tablets
Toshiba Introduces New APs For For IoT Solutions
Toshiba Achieves 1Tbit per Square Inch Areal Density in a 2.5-Inch Hard Disk Drive

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .