Friday, December 19, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
T-Mobile to Pay $90 Million To Settle Case With FCC
New Trojan Targetted Banks Wordlwide
FBI Confirms North Korea Was Behind Sony Hack
Apple Responds To BBC's Allegations Over Working Conditions In Chinese Factory
BlackBerry Returns To Cash Flow
Comparison: Quantum Dot Vs. OLED Displays
Toshiba and SK Hynix Reach Settlement in Lawsuit Ahead Of CES
Google Concerned About MPAA's Actions To Revive SOPA
Active Discussions
Digital Audio Extraction and Plextools
Will there be any trade in scheme for the coming PSP Go?
Hello, Glad to be Aboard!!!
Best optical drive for ripping CD's? My LG 4163B is mediocre.
Hi All!
cdrw trouble
CDR for car Sat Nav
DVD/DL for Optiarc 7191S at 8X
 Home > News > Mobiles > Fujitsu...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, April 14, 2009
Fujitsu Develops Chip-Simulation Environment for Mobile Phones


Fujitsu developed a simulation environment for modeling logic system-on-chips (SoCs) used in mobile phones, that will enable high-precision assessment of system performance by using software that runs on the Symbian OS.

By applying this assessment environment during upstream design - early design stages - of a new handset model to evaluate the system's overall performance, and by feeding this information back into the chip design process, the risk of the need for re-design can be avoided, thereby enabling an earlier start of the software development phase and resulting in lower overall development costs.

For mobile phones and other consumer electronics for which both hardware and software are rapidly advancing and expanding, there is a growing need to be able to comprehensively and quantitatively estimate system performance at an early stage in the design process. For example, when designing a graphic user interface (GUI) - which requires responsiveness that enables user-friendly ease of operation - it can be difficult to estimate system performance of actual products by employing only simple estimation methods, for such complicated multi-functional systems. If the difference between the estimate and the actual product is significant, re-design or limitation of the product's features become necessary, thus potentially leading to lost business opportunities.

Typically, in order to estimate real-world performance of a new handset model, an environment that simulates chip operation was developed. Developing a model generally requires implementation of design data. However, deciding the plan for the implementation design requires an assessment based on the model, resulting in a contradictory situation in which the implementation design and the model are each based on the other. Also, in order to develop new functions, two different methods needed to be employed: one for model development and one for implementation and development.

In order to obtain a reliable performance estimate, a model featuring highly accurate processing time simulations is required. At the same time, to find the best design plan, a model that can handle high-speed processing of iterations - for numerous combinations of components and settings - within a short time is essential. However, due to the fact that there is almost nearly always a tradeoff between speed and accuracy, it is difficult to simultaneously achieve both.

Fujitsu Laboratories developed two new technologies, both based on electronic system level (ESL) technology, to address these challenges.

General-purpose components for which operations can be modified on demand were developed. By editing a program region that describes the operating patterns of the component, the user can control how that component will behave when embedded in the model. As the runtime status can even be modified by the model during an assessment, components for which operation is tied to software can be seamlessly assessed within the same model.

For example, for a component that processes image data while linked to software, for a given volume of data to process, system performance will be affected by factors such as the following: processing units that divide the data, the interval at which they are transmitted, and where they are inserted into the system bus. By embedding one of these newly-developed general-purpose components in place of the component to be assessed, the data-dividing increments and intervals can be modified, making it easy to assess how performance is affected by these changes.

To determine the accuracy of each component that goes into a model, one needs to be able to estimate the effect that each component's accuracy exerts on system performance. A mechanism was developed that enables easy combination or mixing of components of different accuracy levels. This makes it possible to segregate functional units from interface units and build a model in the absolute least number of steps.

By combining speed-priority components - that have minimal impact on system performance even when required accuracy is lowered - with accuracy-priority components which feature significant impact on system performance, it is now possible to build a model that features both speed and accuracy.

Based on this technology, Fujitsu Laboratories modeled a mobile phone system-on-chip (SoC) that was in the actual design stage, developed an environment that uses the world's first assessment software on Symbian OS, and fed the results of the analysis back into the design process. This demonstrated the feasibility of overall system assessments without having to wait for actual implementation, a reduction of approximately one year compared to if a system-assessment process using actual equipment were used. This model maintained the required degree of accuracy in the performance assessment, with operational speed performance that is several thousand times faster than previous models (Fujitsu comparison). For example, performance assessment for 1 second, that previously would have required several days, can be reduced to several dozen minutes.

Thus, model-based assessments can be reiterated within a short period, enabling estimation of system-level performance even during upstream design. This makes it possible to optimize design plans without the need to wait for actual chip development to be completed, thereby reducing the risk of having to go back and re-design. In addition, the software development phase can be started sooner.


Previous
Next
Sony Unveils Touch-screen Walkman        All News        OCZ Introduces Memory Modules For The AMD AM3 Platform
Hitachi Launches GazoPa For Iphone     Mobiles News      Nokia to Launch Touchscreen Tablets, Sees Netbook Market

Get RSS feed Easy Print E-Mail this Message

Related News
Fujitsu Introduces Two Tablets for Businesses
Fujitsu Develops Sensing Middleware to Simplify Development of Sensing Applications
Fujitsu Develops LED Lighting Technology that "Shines" Data on Objects
Fujitsu Develops Design Technology for Allocating LTE-Advanced Base Stations
Fujitsu Launches Petabyte-scale New Hyper-scale Storage ETERNUS CD10000
Fujitsu Boosts Lineup of Smartphones and Tablets for the Enterprise
Fujitsu Develops Fast Recovery Process for Multiple Disk Failures
Fujitsu Relases New Extreme Series SSDs
Fujitsu, NTT, and NEC To Commercialize 400Gbps-class Optical Transmission Technology
Fujitsu, Panasonic Announce New Direction for Their Semiconductor Businesses
Fujitsu To Phase Out Chip Production
Fujitsu Technology Reduces Network Switches in Cluster Supercomputers

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .