Sunday, May 01, 2016
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
You Can No Longer Use Google In Cortana searches
HP Releases New Chromebook for Home and Office
AMD and Nantong Fujitsu Microelectronics Close on Semiconductor Assembly and Test Joint Venture
Google's Pichai Sees the End of Computers
Amazon Reports Strong Quarter
Sony Reports Loss But PlayStation Keeps Performing Well
Japan Display Showcase The Latest In Display Technologies In SID DISPLAY WEEK 2016
Strong Galaxy S7 Sales Keep Samsung's Profit High
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > Intel's...
Last 7 Days News : SU MO TU WE TH FR SA All News

Monday, December 08, 2008
Intel's Silicon Photonics Advancement to Accelerate Future Computing, Communications


Researchers from Intel have de

The researchers used a silicon-based Avalanche Photodetector (APD) that could lower costs and improve performance as compared to commercially available optical devices, according to Intel. The research results were published today in Nature Photonics.

The avalanche photodetector (APD) shows the way to designs that could increase the distance or lower power and cost of optical links, Intel said.

Silicon Photonics is an emerging technology using standard silicon to send and receive optical information among computers and other electronic devices. The technology aims to address future bandwidth needs of data-intensive computing applications such as remote medicine and lifelike 3-D virtual worlds.

Ultra-fast transfer of data will be essential for future computers powered by many processor cores. Silicon Photonics-based technology could deliver higher-speed mainstream computing at a lower cost. This advance builds upon previous Intel breakthroughs such as fast silicon modulators and hybrid silicon lasers. Combined, these technologies could lead to the creation of entirely new kinds of digital machines capable of far greater performance than today.

A team led by Intel researchers created the silicon-based APD, a light sensor that achieves superior sensitivity by detecting light and amplifying weak signals as light is directed onto silicon. This APD device used silicon and CMOS processing to achieve a "gain-bandwidth product" of 340 GHz -- the best result ever measured for this key APD performance metric. This opens the door to lower the cost of optical links running at data rates of 40Gbps or higher and proves, for the first time, that a silicon photonics device can exceed the performance of a device made with traditional, more expensive optical materials such as indium phosphide.

"This research result is another example of how silicon can be used to create very high-performing optical devices," said Mario Paniccia, Ph.D., Intel Fellow and director of the company's Photonics Technology Lab. "In addition to optical communication, these silicon-based APDs could also be applied to other areas such as sensing, imaging, quantum cryptography or biological applications."

Intel worked with industry and academic collaborators, and the research was jointly funded by Defense Advanced Research Projects Agency (DARPA). Numonyx, a leading maker of NOR, NAND, RAM and phase change non-volatile memory technologies, provided manufacturing and process expertise. "This achievement is a good example of the effective relationship between Intel and Numonyx," said Yonathan Wand, Numonyx manufacturing vice president and Fab1 plant manager. "We are committed to enhancing this relationship, to enable further breakthroughs in the Silicon Photonics area."

Prof. Joe Campbell of the University of Virginia and Prof. John Bowers of the University of California, Santa Barbara, both APD experts, provided consultation and assisted with testing.

"This APD utilizes the inherently superior characteristics of silicon for high-speed amplification to create world-class optical technology," Bowers said. "We were glad to help characterize these devices and will continue to work with Intel to realize the full potential of silicon photonics devices."


Previous
Next
Vista Global Usage Share is 21.16 Percent According to OneStat.com        All News        Toshiba to Limit NAND Chip Output Due to Weak Demand
Vista Global Usage Share is 21.16 Percent According to OneStat.com     General Computing News      Toshiba to Limit NAND Chip Output Due to Weak Demand

Get RSS feed Easy Print E-Mail this Message

Related News
Brian Krzanich Outlines Intel's Future Strategy
Microsoft Positions Windows 10 As A Platform for the Intelligence Revolution
Intel To Axe 12,000 Jobs, Focuses On Cloud And Smart, Connected Computing Devicess
Intel Outlines Next Generation of Experiences At 2016 Intel Developers Forum Shenzhen
Intel Packs Altera Arria 10 FPGAs With Xeon E5-2600 v4 Processors
Intel Senior Executives Leaving Company
Intel Introduces Xeon Processor E5-2600 v4 And Its First 3D NAND SSDs
Chinese AI Team To Challenge Google's AlphaGo
Intel To Break From Typical Two-year CPU Release Cycle
New Intel NUC "Skull Canyon" Comes To Change the Game
Google Artificial Intelligence Program Wins Final Game In Go Tournament
Google's AlphaGo AI Machine Defeated in Fourth Game

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2016 - All rights reserved -
Privacy policy - Contact Us .