Tuesday, November 25, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
HP Reports Fiscal 2014 Full-Year and Fourth Quarter Results
Hitachi Wearable Device Monitors Brain Functions
Hitachi Technology Stores Digital Data In 100 Recording Layers, Data Can be Stored For 300 million Years
Sony To Provide Refunds To Users Over Misleading Ads For PlayStation Vita
Blu-ray Movie Discs Used As Templates For Improving Solar Cell Performance
PC Outlook Remains Cautious
Trade Your iPhone for BlackBerry Passport And Get $550
GreatFire.org Unblocks BBC Chinese
Active Discussions
Hi All!
cdrw trouble
CDR for car Sat Nav
DVD/DL for Optiarc 7191S at 8X
Copied dvd's say blank in computer only
Made video, won't play back easily
New Features In Firefox 33
updated tests for dvd and cd burners
 Home > News > PC Parts > IBM Dev...
Last 7 Days News : SU MO TU WE TH FR SA All News

Monday, March 17, 2008
IBM Develop World's Tiniest Nanophotonic Switch to Route Optical Data Between Cores in Future Chips


IBM scientists today took another advance towards sending information inside a computer chip by using light pulses instead of electrons by building the world?s tiniest nanophotonic switch.

The switch is an important building block to control the flow of information inside future chips and can significantly speed up the chip performance while using much less energy.

"This new development is a critical addition in the quest to build an on-chip optical network," said Yurii Vlasov, manager of silicon nanophotonics at IBM's TJ Watson Research Center. "In view of all the progress that this field has seen for the last few years it looks that our vision for on-chip optical networks is becoming more and more realistic".

Today's announcement is another advance in their quest to develop next generation high-performance multi-core computer chips which transmit information internally using pulses of light traveling through silicon instead of electrical signals on copper wires.

In a paper published in the journal Nature Photonics, IBM unveils the development of a silicon broadband optical switch, another key component required to enable on-chip optical interconnects. Once the electrical signals have been converted into pulses of light, this switching device performs the key role of directing traffic" within the network, ensuring that optical messages from one processor core can efficiently get to any of the other cores on the chip.

The IBM team demonstrated that their switch has several critical characteristics which make it ideally suited to on-chip applications. First, the switch is extremely compact. As many as 2000 would fit side-by-side in an area of one square millimeter, easily meeting integration requirements for future multi-core processors.

Second, the device is able to route a huge amount of data since many different wavelengths or colors" of light can be switched simultaneously. With each wavelength carrying data at up to 40 Gb/s, it is possible to switch an aggregate bandwidth exceeding 1 Tb/s -- a requirement for routing large messages between distant cores. Last but not least, IBM scientists showed for the first time that their optical switch is capable of operating within a realistic on-chip environment, where the temperature of the chip itself can change dramatically in the vicinity of "hot-spots," which move around depending upon the way the processors are functioning at any given moment. The IBM scientists believe this temperature-drift tolerant operation to be one of the most critical requirements for on-chip optical networks.

An important trend in the microelectronics industry is to increase the parallelism in computation by multi-threading, by building large scale multi-chip systems and, more recently, by increasing the number of cores on a single chip. For example the IBM Cell processor which powers Sony?s PlayStation 3 gaming console consists of nine "brains," or cores, on a single chip. As users continue to demand greater computing performance, chip designers plan to increase this number to tens or even hundreds of cores.

This approach, however, only makes sense if each core can receive and transmit large messages from all other cores on the chip simultaneously. The individual cores located on multi-core microprocessors communicate with one another over millions of tiny copper wires. However, this copper wiring would simply use up too much power and be incapable of transmitting the enormous amount of information required to enable massively multi-core processors.

IBM researches are exploring an alternative solution to this problem by connecting cores using pulses of light in an on-chip optical network based on silicon nanophotonic integrated circuits. Like a long-haul fiber-optic network, such an extremely miniature on-chip network will transmit, receive, and route messages between individual cores that are encoded as a pulses of light. It is envisioned that using light instead of wires, as much as 100 times more information can be sent between cores, while using 10 times less power and consequently generating less heat.

The report on this work, entitled "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks" by Yurii Vlasov, William M. J. Green, and Fengnian Xia of IBM?s T.J.WatsonResearchCenter in Yorktown Heights, N.Y. is published in the April 2008 issue of the journal Nature Photonics.

In November 2005, IBM scientists demonstrated a silicon nanophotonic device that can significantly slow down and actively control the speed of light.

In December 2006 an analogous tiny silicon device was used to demonstrate buffering of over a byte of information encoded in optical pulses a requirement for building optical buffers for on-chip optical networks.

In December 2007, IBM scientists announced the development of an ultra-compact silicon electro-optic modulator, which performs the job of converting electrical signals into the light pulses, a prerequisite for enabling on-chip optical communications.


Previous
Next
Japan to Cut Off Internet of Illegal Downloaders        All News        DVD Writing Quality Database Updated
BenQ Unveils 24" V2400W Widescreen LCD     PC Parts News      First Quad-core Notebooks to Appear Later This Year

Get RSS feed Easy Print E-Mail this Message

Related News
IBM Patents Cloud Privacy Engine
IBM Introduces Verse Business E-mail With Social Media Integration
Lufthansa Signs $1.25 billion Deal with IBM
Twitter and IBM Form Partner to Data Analytics
Glonbalfoundries Buy IBM's Micorelectronics Business
New IBM Tape Cartridge Holds 10TB Uncompressed Data
IBM and SAP Partner On Enterprise Cloud
IBM Claims New OpenPOWER-Based Systems Are Superior Alternative to x86-Based Servers
Lenovo Set to Close Acquisition of IBM's x86 Server Business
IBM Offers Watson Data Tool To the Mainstream
IBM and Intel Bring New Security Features to the Cloud
IBM Tries To Strengthen Its Presence In China With Local Vendor Deal

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .