Sunday, November 29, 2015
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Google Glass Evoluion Could Be A Monocle
NSA's Phone Surveillance Program Changes
Lenovo and Razer Partner to Make Gaming PCs
LG Display Makes Huge Investment in OLED Panels
Sony To Bring Remote Play Feature To PS4
MINIX NEO U1 Media Hub for Android Coming Next Week
Samsung Joins Audi’s Progressive SemiConductor Program
German ISPs May Block Music-sharing Sites: court
Active Discussions
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
How to burn a backup copy of The Frozen Throne
Help make DVDInfoPro better with dvdinfomantis!!!
Copied dvd's say blank in computer only
menu making
Optiarc AD-7260S review
 Home > News > PC Parts > IBM Dev...
Last 7 Days News : SU MO TU WE TH FR SA All News

Thursday, April 12, 2007
IBM Develops Chip-stacking Technique

IBM said on Wednesday it will be able to make microchips faster and more energy efficient by stacking components on top of each other, a breakthrough that cuts the distance an electrical signal needs to travel.

The technique works by drilling tiny holes through a wafer of silicon and filling them with metal. Components such as memory can then be stacked on top of the main part of the chip, eliminating the need for wires stretching out to the sides.

IBM likened the method to replacing a sprawling airport parking lot with a multi-storied garage right next to the terminal. Like people walking from the garage to the terminal, electrical signals do not have to travel as far in a chip with stacked components.

"It opens up a range of applications and neat things we can do," said Lisa Su, head of semiconductor research at IBM.

IBM will use the method to make power management chips for wireless devices later this year, allowing them to use 40 percent less power than previous versions, according to IBM.

Eventually, IBM plans to incorporate the technique into full-blown processors.

IBM said that the new technique will extend Moore?s Law beyond its expected limits.

It is the latest achievement by IBM's semiconductor researchers, who have in recent months hit upon several breakthroughs in materials science and chip design. In December, IBM announced the first 45nm chips using immersion lithography and ultra-low-K interconnect dielectrics.

In January, IBM announced "high-k metal gate," which substitutes a new material into a critical portion of the transistor that controls its primary on/off switching function. The material provides superior electrical properties, while allowing the size of the transistor to be shrunk beyond limits being reached today.

In February,IBM revealed a first-of-its-kind, on-chip memory technology that features the fastest access times ever recorded in eDRAM (embedded dynamic random access memory).

Then in March, IBM unveiled a prototype optical transceiver chipset capable of reaching speeds at least eight-times faster than optical components available today.

AACS Revokes Blu-ray, HD DVD Hacked Keys        All News        Toshiba, Matsushita Aims to Sell TV-use OLED Panels
TSMC Expects to Enter 45nm Production in September     PC Parts News      Crucial Announces 1066MHz Ballistix & Ballistix Tracer Memory

Get RSS feed Easy Print E-Mail this Message

Related News
IBM’s Watson Forecasts Products for Holiday Season
IBM, Xilinx target Intel With Chip Collaboration
IBM To Buy The Weather Company's Product and Technology Businesses
IBM Takes On Intel's x86 Systems With New Linux Servers
Research Breakthrough Paves Way for Post-Silicon Future
IBM and ARM Collaborate to Accelerate Delivery of Internet of Things
IBM Unveils Linux Mainframe System
Watson to Gain Ability to See with Acquisition of Merge Healthcare
IBM Acquires Compose to Expand Cloud Data Services
IBM Revenue Declines
IBM Develops 7nm Processor
IBM and Box Partner to Transform Work in the Cloud

Most Popular News
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .