Friday, August 01, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Researchers Discover New Smartphone Flaws
U.S. Government Issues Warning About Malicious Software
Hackers Can Use USB Devices in Attacks
Next Apple TV Release Delayed
CoD: Advanced Warfare Collector's Editions Announced
Lite-On IT Merged With Lite-On
AMD Introduces New Kaveri APUs for System Builders
Toshiba, Samsung Vie For 48-layer 3-D NAND Chips
Active Discussions
help questions structure DVDR
Made video, won't play back easily
Questions durability monitor LCD
Questions fungus CD/DVD Media, Some expert engineer in optical media can help me?
CD, DVD and Blu-ray burning for Android in development
IBM supercharges Power servers with graphics chips
Werner Vogels: four cloud computing trends for 2014
Video editing software.
 Home > News > PC Parts > IBM Use...
Last 7 Days News : SU MO TU WE TH FR SA All News

Monday, February 26, 2007
IBM Uses Computers to Enhance Computers


IBM researchers today announced an advancement in computer-based simulations that is helping to drive chip technologies to new heights of performance and function.

As reported in the scientific journal Physical Review Letters, a team of scientists at IBM's Zurich Research Laboratory for the first time used advanced supercomputer-based models to more deeply understand and master the complex behavior of a promising new material -- hafnium dioxide -- in silicon transistors, the fundamental building blocks of computer chips.

The new material is key to the company's recently-announced "high-k metal gate" technology, the first major change to the transistor since the emergence of silicon semiconductors, promising enhanced chip performance to benefit computers and other electronic systems. IBM is implementing the technology and will apply it to products in 2008.

The semiconductor industry has long sought to find a new material for a crucial part of the transistor known as the gate dielectric, which, with the materials used currently, is limiting the industry's ability to keep pace with the progress predicted by Moore's Law -- a maxim predicting a doubling of the number of transistors on a chip, and an associated increase in chip performance, every 12-18 months.

While hafnium dioxide appeared to be an ideal candidate for next-generation transistor gates, the introduction of any new material in semiconductors can have unforeseen consequences, so it must be thoroughly understood beforehand. One critical factor contributing to IBM's success in the highly complex and difficult task of integrating these new materials has been simulation of the interaction of this material at the atomic level.

Scientists at IBM's Zurich Research Laboratory have used the capabilities offered by the IBM Blue Gene supercomputer, to determine why hafnium dioxide works so much better than other high-k materials previously considered by the industry. As a result, the researchers were able to gain a clear picture -- for the first time -- of the underlying physics driving the unique electrical behavior of hafnium dioxide when it mixes with silicon, as observed in laboratory experiments, shedding light on the reasons that make this material unique as gate dielectric.

For this study, the IBM team simulated various material compositions using 50 different models of hafnium silicates, materials that form when silicon and hafnium oxides mix. These models contain up to 600 atoms and approx. 5,000 electrons, representing a realistic system. A single calculation of the dielectric constant was accomplished in five days of computing time on the two-rack Blue Gene/L supercomputer (4096 processors) installed at the Zurich lab's site. The complete simulation for all 50 models, approx. 250 days on Blue Gene, would normally take the most powerful laptop PC an astounding 700 years to calculate. This corresponds to a staggering 200 billion billion (2 x 10^20) operations.

This work illustrates how supercomputing modeling techniques are bringing technologies of all kinds to a new level. Computer simulations have been possible since the 1980s, but only now -- thanks to the evolution of algorithms and their mapping to such an extremely scalable and balanced architecture as that of the Blue Gene computer -- scientists are able to tackle these types of problems by creating realistic models with several thousands of particles, starting only from the laws of nature.

"Advances in algorithms and their optimal mapping on extremely large and scalable computer hardware such as Blue Gene are empowering us to do accurate and realistic atomic simulations of complex materials," explains Alessandro Curioni, supercomputing expert from IBM's Zurich lab and emphasizes: "So indeed, today we are able to use supercomputers to investigate materials that will be eventually used in the next generation of supercomputers."

The approach used by the IBM team is called ab initio molecular dynamics, where the interactions between the particles of the system are derived from the basic laws of physics without employing any empirical data. In the course of their work, the IBM team created more than 50 realistic virtual models of the hafnium silicates with various concentrations of hafnium on the supercomputer. They then simulated the evolution of these structures over a given time period, estimated their dielectric constants and used these results to rationalize experimental findings.

The advantage of computer-based simulations is that, being virtual, they are free of the problems inherent to laboratory experiments, such as the effects of preparation conditions, the purity of the compounds, or the presence of parasitic reactions. Most importantly, with the simulations one can follow what the individual atoms are doing. Computer simulations allow the "intrinsic" and ideal characteristics of a material to be calculated and correlated directly with the structure at an atomic level.


Previous
Next
WD Hard Drives Fastest in Vista Performance Test        All News        Cypress Semiconductor to Work With UMC For Memory Chip Production
Intel to Invest Over One billion Dollars for 45nm Site in New Mexico     PC Parts News      Cypress Semiconductor to Work With UMC For Memory Chip Production

Get RSS feed Easy Print E-Mail this Message

Related News
IBM Talks With Globalfoundries Stall Over Price: report
Apple and IBM Partner On Enterprise Mobility
IBM Announces $3 Billion Investment In Future Chip Research
IBM To Help China Deliver on Ambitious Energy and Environmental Goals
China Clears IBM, Lenovo Server Deal
IBM Hopes Nanotube Transistors Are Coming Aroud 2020
IBM May Sell Chip-Making Unit to Globalfoundries: report
IBM Ships POWER8 Power System Servers
IBM Patent Helps Eliminate Fraudulent Behavior in the Cloud
IBM And Fujifilm Squeeze Really Big Data In Magnetic Tapes
Researchers Discover New 'Self-healing' Industrial Polymers
IBM Develops Ultra-fast Phase Change Memory System

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .