Thursday, November 26, 2015
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Panasonic's CX Ultra HD Smart TVs Bring 4K Closer To Home
New LG Ray Smartphone Focuses On Photo Shooting
HP Profit Lower Than Expected
Police Arrests Fifth Suspect In TalkTalk Hack Investigation
Toshiba Develops Fast 3D Metal Printer
ECS LIVA X2 Mini PC Runs Windows 10
Memory-Tech Ready To Start Mass Production Of UHD Blu-ray Disc
New Nokia 230 and Nokia 230 Dual SIM Phones Coming Next Month
Active Discussions
roxio issues with xp pro
How to back up a PS2 DL game
Copy a protected DVD?
How to burn a backup copy of The Frozen Throne
Help make DVDInfoPro better with dvdinfomantis!!!
Copied dvd's say blank in computer only
menu making
Optiarc AD-7260S review
 Home > News > PC Parts > Intel D...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, September 26, 2006
Intel Develops Tera-Scale Research Chips

Experimental Chips Could Bring TeraFLOP Performance, Terabytes of Bandwidth into Wide Use in Future Computers and Data Centers

Intel Corporation today described the significant technical challenges that need to be addressed if computing, from personal devices to giant data centers, is to keep up with increasing demand by consumers and businesses for Internet-based software, services and media-rich experiences.

In a speech today at the Intel Developer Forum, Intel Senior Fellow and Chief Technology Officer Justin Rattner said that during the next decade online software services, hosted by mega data centers with more than a million servers, will allow people to access personal data, media and applications from any high-performance device to play photo-realistic games, share real-time video and do multimedia data mining. This new usage model will challenge the industry to deliver the one trillion floating-point operations-per-second (teraFLOPs) of performance and terabytes of bandwidth.

"The rise of mega data centers and the need for high-performance personal devices will require the industry to innovate at every level, from many-core processors to higher-speed communications between systems, while delivering better security and energy efficiency," said Rattner. "Solving these challenges will bring benefits to all computing devices while creating new markets and opportunities for developers and systems designers."

Tera-Scale Research Prototype Chips

Rattner outlined the importance of three major silicon breakthroughs. He started by revealing the first details of Intel's tera-scale research prototype silicon, the world's first programmable TeraFLOP processor. Containing 80 simple cores and operating at 3.1 GHz, the goal of this experimental chip is to test interconnect strategies for rapidly moving terabytes of data from core to core and between cores and memory.

"When combined with our recent breakthroughs in silicon photonics, these experimental chips address the three major requirements for tera-scale computing teraOPS of performance, terabytes-per-second of memory bandwidth, and terabits-per-second of I/O capacity," said Rattner. ?While any commercial application of these technologies is years away, it is an exciting first step in bringing tera-scale performance to PCs and servers.?

Unlike existing chip designs where hundreds of millions of transistors are uniquely arranged, this chip's design consists of 80 tiles laid out in an 8x10 block array. Each tile includes a small core, or compute element, with a simple instruction set for processing floating-point data, but is not Intel Architecture compatible. The tile also includes a router connecting the core to an on-chip network that links all the cores to each other and gives them access to memory.

The second major innovation is a 20 megabyte SRAM memory chip that is stacked on and bonded to the processor die. Stacking the die makes possible thousands of interconnects and provides more than a terabyte-per-second of bandwidth between memory and the cores.

Rattner demonstrated a third major innovation, the recently announced Hybrid Silicon Laser chip developed in collaboration with researchers at University of California, Santa Barbara. With this breakthrough, dozens or maybe hundreds of Hybrid Silicon Lasers could be integrated with other silicon photonic components onto a single silicon chip. This could lead to a terabit-per-second optical link capable of speeding terabytes of data between chips inside computers, between PCs, and between servers inside data centers.

IDF: Quad-core Chips in November        All News        Logitech Introduces Next-Generation Wireless Headphones for iPod, MP3
IDF: Quad-core Chips in November     PC Parts News      Aopen Cube goes dual core

Get RSS feed Easy Print E-Mail this Message

Related News
Intel Optane Memory Products Coming Next Year
Intel Advances High Performance Computing System Designs
Intel Expands The Xeon processor D-1500 Product Family And Unveils New Ethernet Controllers
Google Open Sources TensorFlow Machine Learning System
Intel Unveils New IoT Platform
Facebook Reports Progress In Artificial Intelligence Research
Intel Introduces Smart Tiny House Concept For IoT Connected Devices
Intel To Invest In Non-Volatile Memory
Intel Xeon Processor E3-1200 v5 Family Powers New Entry-level Workstations
Intel-Powered Arduino 101 Board Coming Next Year
Intel Reports Flat Revenue Despite Low PC Sales
New Firmware For Intel 750 Series SSD MAkes Your PC Booy Up Faster

Most Popular News
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .