Friday, November 27, 2015
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
German ISPs May Block Music-sharing Sites: court
Study Says HTTPS Certificate and SSH Key Reuse Endangers Millions of Devices Worldwide
SK Hynix Rejects Chinese Take-over Offer
New Huawei Mate 8 Smartphone Launched With Kirin 950 Inside
Samsung's New DDR4 with TSV Gives a Boost To Data Centers and Servers
New Raspberry Pi Zero Is A $5 Tiny Computer
Panasonic's CX Ultra HD Smart TVs Bring 4K Closer To Home
New LG Ray Smartphone Focuses On Photo Shooting
Active Discussions
roxio issues with xp pro
How to back up a PS2 DL game
Copy a protected DVD?
How to burn a backup copy of The Frozen Throne
Help make DVDInfoPro better with dvdinfomantis!!!
Copied dvd's say blank in computer only
menu making
Optiarc AD-7260S review
 Home > News > Optical Storage > Millenn...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, September 26, 2006
Millennium Technology Prize Goes to Blue Laser Inventor

Shuji Nakamura received on 8 September the Millennium Technology Prize at an award ceremony in Helsinki. The prize of one million euros and the 'Peak' prize trophy was presented to Professor Nakamura by Tarja Halonen, the president of Finland.

Nakamura's work has seen him develop very bright blue light-emitting diodes (LEDs), as well as green and white LEDs and, most importantly to the optical media industry, the development of the blue-laser diode.

Blue LEDs actually consist of a two-sided crystal in which the "sides" represent an n-type and a p-type semiconductor. The n-type conducts electrons, and the p-type conducts holes, which are an absence of electrons. The electrons flow in one direction, the holes flow in the opposite direction. The location in the crystal where electrons and holes fall into, or are injected into, is called the junction, and that is where the photons - particles of light - are emitted.

Nakamura discovered how to grow semiconductor crystals so that they have the structure required to create "quantum wells" for electrons at the junction. One of the key techniques for creating these wells was the addition of indium to the GaN crystal. Without the indium, GaN produces a higher frequency of ultraviolet light which is not in the visible spectrum. Adding indium results in a lowering of the frequency of the emitted photons to visible blue, but the indium also creates the required quantum well effect, so that electrons that fall into passing holes first fall into the well and gain additional mass before being injected into the holes. This adding of mass in the well creates a more vigorous injection - and therefore more light.

The creation of the blue laser came as a direct response to Nakamura adapting his blue LED technology. He discovered that he could amplify a single light frequency in a crystal by using two highly polished mirrors to make the light resonate at the required frequency.

By using mirrors on either side of the transmitting crystal and by increasing the crystal's capacity to accept strong enlectrical, he created the high-frequency blue-laser light.

Blue lasers are a substitute for the infrared lasers used in compact-disc (CD) players. Using them means that the information storage capacity of a CD is increased five times. Blue lasers mean not only more data on CDs, but also on DVDs. Next-generation high-definition DVDs employing blue lasers are about to reach the market.

When substituting a blue laser for the red one used in CD players, it was found that the information storage capacity of a CD was increased by five times. This discovery helped shape the development of next-generation of optical media where increased data rates are a premium and the blue laser, originally developed by Nakamura, has been adopted by the Blu-ray and HD DVD formats.

Professor Nakamura?s current research interests are the growing of optoelectronic materials and the fabrication of novel semiconductor devices. In more specific terms, he is working on new devices including full-colour LEDs, an efficient white-LED light bulb, laser diodes and high-power, microwave communication devices.

New Panasonic AVCHD Camera Stores Video on SD Card        All News        First Sony NEC Optiarc DVD Burner Generation
AOpen Announces 18X DVD Burner     Optical Storage News      First Sony NEC Optiarc DVD Burner Generation

Get RSS feed Easy Print E-Mail this Message

Most Popular News
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .