Friday, November 28, 2014
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
Syrian Electronic Army targets CNBC, Telegraph, Independent, PCWorld
GoPro Camera Drones In The Works: report
European Parliament Votes To Break Up Google
LG Electronics Streamlines Structure, Names New Presidents of Home and Mobile Segments
Microsoft Accidentally Anounced Acquisition Of Acompli
Microsoft Offers Massive Music Deals For The Holidays
ETRI Develops 10Gbps Internet Speeds Technology
New Asus Strix 7.1 Surround Gaming Headset Released
Active Discussions
Hi All!
cdrw trouble
CDR for car Sat Nav
DVD/DL for Optiarc 7191S at 8X
Copied dvd's say blank in computer only
Made video, won't play back easily
New Features In Firefox 33
updated tests for dvd and cd burners
 Home > News > Optical Storage > Millenn...
Last 7 Days News : SU MO TU WE TH FR SA All News

Tuesday, September 26, 2006
Millennium Technology Prize Goes to Blue Laser Inventor


Shuji Nakamura received on 8 September the Millennium Technology Prize at an award ceremony in Helsinki. The prize of one million euros and the 'Peak' prize trophy was presented to Professor Nakamura by Tarja Halonen, the president of Finland.

Nakamura's work has seen him develop very bright blue light-emitting diodes (LEDs), as well as green and white LEDs and, most importantly to the optical media industry, the development of the blue-laser diode.

Blue LEDs actually consist of a two-sided crystal in which the "sides" represent an n-type and a p-type semiconductor. The n-type conducts electrons, and the p-type conducts holes, which are an absence of electrons. The electrons flow in one direction, the holes flow in the opposite direction. The location in the crystal where electrons and holes fall into, or are injected into, is called the junction, and that is where the photons - particles of light - are emitted.

Nakamura discovered how to grow semiconductor crystals so that they have the structure required to create "quantum wells" for electrons at the junction. One of the key techniques for creating these wells was the addition of indium to the GaN crystal. Without the indium, GaN produces a higher frequency of ultraviolet light which is not in the visible spectrum. Adding indium results in a lowering of the frequency of the emitted photons to visible blue, but the indium also creates the required quantum well effect, so that electrons that fall into passing holes first fall into the well and gain additional mass before being injected into the holes. This adding of mass in the well creates a more vigorous injection - and therefore more light.

The creation of the blue laser came as a direct response to Nakamura adapting his blue LED technology. He discovered that he could amplify a single light frequency in a crystal by using two highly polished mirrors to make the light resonate at the required frequency.

By using mirrors on either side of the transmitting crystal and by increasing the crystal's capacity to accept strong enlectrical, he created the high-frequency blue-laser light.

Blue lasers are a substitute for the infrared lasers used in compact-disc (CD) players. Using them means that the information storage capacity of a CD is increased five times. Blue lasers mean not only more data on CDs, but also on DVDs. Next-generation high-definition DVDs employing blue lasers are about to reach the market.

When substituting a blue laser for the red one used in CD players, it was found that the information storage capacity of a CD was increased by five times. This discovery helped shape the development of next-generation of optical media where increased data rates are a premium and the blue laser, originally developed by Nakamura, has been adopted by the Blu-ray and HD DVD formats.

Professor Nakamura?s current research interests are the growing of optoelectronic materials and the fabrication of novel semiconductor devices. In more specific terms, he is working on new devices including full-colour LEDs, an efficient white-LED light bulb, laser diodes and high-power, microwave communication devices.


Previous
Next
New Panasonic AVCHD Camera Stores Video on SD Card        All News        First Sony NEC Optiarc DVD Burner Generation
AOpen Announces 18X DVD Burner     Optical Storage News      First Sony NEC Optiarc DVD Burner Generation

Get RSS feed Easy Print E-Mail this Message

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2014 - All rights reserved -
Privacy policy - Contact Us .