Saturday, February 24, 2018
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
MWC: The Cat S61 Smartphone Measures Distances, Senses the Quality of Air
MWC: TCL Introduces Alcatel 5, 3 and 1 Smartphone Series, Android Oreo Smartphone and Tablets
IBM Researchers Talk About the Future of EUV at SPIE
Xiaomi and Microsoft Expand Their Collaboration in cloud, Devices and AI Areas
Google's Augmented Reality SDK ARCore 1.0 Released, Google Lens Updated
Google Assistant is Going Global
TEAC Releases New Reference Series Hi-Res Audio Models
First Affordable Android Go Smartphones Coming Next Week
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > PC Parts > Hitachi...
Last 7 Days News : SU MO TU WE TH FR SA All News

Wednesday, September 13, 2006
Hitachi Promises 2-Terabyte Hard Drive by Decade End


Celebrating the 50-year anniversary since the birth of the hard drive, Hitachi is also celebrating an areal density achievement of 345 gigabits per square inch (Gbits/sq. in.) using perpendicular magnetic recording (PMR) technology.

This areal density, demonstrated in laboratory testing, represents an increase of more than two-and-a-half times the areal density of today's highest-capacity products.

By 2009, Hitachi predicts that 345 Gbits/sq. in. would result in a two-terabyte (TB) 3.5-inch desktop drive, a 400-gigabyte (GB) 2.5-inch notebook drive or a 200-GB 1.8-inch drive. In the first half of 2007, Hitachi expects to bring hard drive areal density half way to the 345 Gbits/sq. in. mark with a 1-TB 3.5-inch product.

While 345 Gbits/sq. in. is within grasp in the next two to three years, researchers at Hitachi anticipate that extensions to PMR technology will take hard drive advancements out beyond the next two decades, using ever more complex and sophisticated means such as patterned media and thermally-assisted recording. With these technologies, Hitachi predicts that continued areal density advancements would be possible ten plus years into the future. For example, in approximately 2016, 4 terabits per square inch (Tbits/sq. in.) areal density would enable a 25-TB 3.5-inch drive. Beyond that, Hitachi anticipates as much as 100 Tbits/sq. in. areal density will be possible, which would enable a 0.65-petabyte 3.5-inch drive.

"We are very optimistic about the future for Hitachi and the hard disk drive industry with research on these technologies strongly underway," said Hiroaki Nakanishi, CEO, Hitachi Global Storage Technologies. "The inventors of the original RAMAC could not have seen five decades of innovation in 1956, but here we are today celebrating its Golden Anniversary. With continued research investment, we look forward to celebrating 75 years -- the Diamond Anniversary -- of hard drive technology."

With PMR technology rolled out in high-volume production this year -- appropriately on the 50th anniversary of the hard drive -- researchers are looking at overcoming the next obstacles to advancing hard drive technology. The major challenge that hard disk drive designers are facing in increasing data densities is that the magnetic grains on the disk that store the data must become smaller and will eventually become too small to be thermally stable at room temperature. Patterned media and thermally-assisted recording are solutions to this problem.

Today, roughly 100 magnetic grains make up a single bit of data. With patterned media, researchers are creating isolated magnetic islands with one magnetic grain representing a bit of data. By using fewer magnetic grains, patterned media allows more bits of data per square inch of disk space while maintaining thermal stability.

Rather than using fewer grains to represent a bit of data, thermally-assisted recording allows magnetic grains to be smaller while resisting thermal fluctuations at room temperature. As its name suggests, thermally-assisted recording uses a laser to heat up the media while the magnetic head is writing the smaller bits of data. This enables the use of media that is stable at room temperature with the very small magnetic grains required for high-density storage.

Hitachi researchers predict that patterned media technology could ship in products as early as 2010. They believe that thermally-assisted recording would be combined with patterned media technology several years later when patterning alone is insufficient to sustain progress.


Previous
Next
Sony to Launch Blu-ray Recorder in Japan by Dec        All News        Fifth Media launches Unique Windows Mobile Smart Phones
VIA Announces Carbon Free Processor     PC Parts News      First 1-to-3 HDD Copy Controller

Get RSS feed Easy Print E-Mail this Message

Related News
Toshiba Reveals Fresh Canvio Portable Hard Drive Models
Seagate Showcases New Mobile Data Storage Solutions at CES 2018
Showa Denko Starts Shipment of 3.5-Inch 1.5 TB HD Media
Seagate Guardian Series Now Includes 12TB Drives for NAS and Desktops
Western Digital Ships 12TB WD Gold Hard Drives
Sony Releases Enhanced Hard Disk Drives For Professionals
Western Digital Expands NAS-Optimized Hard Drive Offerings to 10TB With Helium-Based WD Red and WD Red Pro Hard Drives
Western Digital Ships Fourth-Generation Ultrastar He12 12TB Hard Drive
Western Digital Adds 10TB Model To Purple Surveillance-class Hard Drives
Toshiba Announces First MN Series HDDs
Seagate On Track To Deliver 20TB Hard Drives By 2020
Hitachi and Clarion Develop a Remote Parking System Using Smartphone that Enables Driverless Parking

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2018 - All rights reserved -
Privacy policy - Contact Us .