Saturday, August 19, 2017
Search
  
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
YouTube TV expands to new markets
Facebook Tests News Stories Customized to Users' Interests
Google Home Now Supports Free Calls
Asus Unveils the ZenFone 4 Pro, ZenFone 4, ZenFone 4 Selfie Pro, and ZenFone 4 Selfie
Nokia 8 Shipped With ZEISS Optics
Apple is Getting Serious in TV Shows and Film Prospect
Acer's New 4K Projectors Bring the Benefits of Cinema Home
Fiat Chrysler Joins BMW, Intel, Mobileye in Autonomous Driving Team
Active Discussions
Which of these DVD media are the best, most durable?
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
Help make DVDInfoPro better with dvdinfomantis!!!
menu making
Optiarc AD-7260S review
cdrw trouble
 Home > News > General Computing > HP Prop...
Last 7 Days News : SU MO TU WE TH FR SA All News

Thursday, June 09, 2005
HP Proposes Error Correction Scheme for Nano-electronic Circuits


HP today announced that its researchers have created a new way to design future nano-electronic circuits using coding theory. The result could be nearly perfect manufacturing yields with equipment a thousand times less expensive than what might be required using future versions of current technologies.

In a paper appearing in the June 6 issue of "Nanotechnology," a publication of the Institute of Physics, HP Labs authors Phil Kuekes, Warren Robinett, Gadiel Seroussi and Stan Williams explain in detail a defect-tolerant interface to HP's patented crossbar architecture.

"We have invented a completely new way of designing an electronic interconnect for nano-scale circuits using coding theory, which is commonly used in today's digital cell phone systems and in deep-space probes," said Williams, HP Senior Fellow and director, Quantum Science Research at HP Labs. "By using a cross-bar architecture and adding 50 percent more wires as an 'insurance policy,' we believe it will be possible to fabricate nano-electronic circuits with nearly perfect yields even though the probability of broken components will be high."

Williams said he believes future chips will have to rely, at least in part, on the crossbar architecture, in which a set of parallel nanoscale wires are laid atop another set of parallel wires at approximately a 90 degree angle, sandwiching a layer of electrically switchable material in between. Where the material becomes trapped between the crossing wires, they can form a switch that represents a "1" or "0," the basic building blocks of computer code.

Future chips may be limited in the geometric complexity that can be created at the nano level because of problems with precision alignment. Crossbar structures are highly regular and therefore relatively easier and less expensive to fabricate than the complex array of wires, transistors and other elements in today's processors. The disadvantage of crossbars is that they require more space on the silicon substrate.

"We think the tradeoff of space versus manufacturing ease will become more an issue in the near future," said Williams.

Furthermore, as sizes of electronic features get down to a few nanometers, it will become either physically impossible -- or economically unfeasible -- to produce absolutely perfect circuits.

"Future chip manufacturers will have to deal with the reality of defects," said Williams.

HP's approach involves enhancing a device known as a demultiplexer, which enables data to be read and written in a circuit by connecting the crossbar array of nanowires to a small number of conventional wires. By adding a few more conventional wires and using basic coding theory, the HP researchers show that the demultiplexer will still work even if a significant number of the connections between the conventional wires and the nanowires are broken.

"It's like giving a distinctive name to a restaurant host to be sure you hear your party called above the noise of the crowd," said Kuekes, a senior computer architect and one of the authors of the paper. "Instead of 'the Jones party,' you might put yourself down as 'the John Paul Jones party.' That way, when the host calls your name, you'll hear it, even if every word doesn't come through clearly."

Using defect tolerance to replace the need to produce "perfect" chips could provide a huge cost advantage for chip manufacturers in the future.

Williams said the HP Labs group has created working devices in the laboratory at the 30 nanometer half-pitch scale -- about a third the size of today's chips. The International Technology Roadmap for Silicon, the standard for the industry, predicts that chips using features at 32 nanometers half pitch should be in production in about seven to eight years.


Previous
Next
Pioneer, MKM Co-develop Blu-ray Recordable Media on the Heels of HD-DVD        All News        High-Definition Multi-Purpose Commercial Plasma Display From Pioneer
$1 amnesty for pirated software     General Computing News      London man arrested for 2001 NASA hacking

Get RSS feed Easy Print E-Mail this Message

Related News
HP's Z VR Backpack G1 Workstation Puts Pros Into the VR World
HP Takes Back PC Shipment Crown from Lenovo
HP Debuts Omen Accelerator, Powerful Omen and Omen X Compact Desktops
HP Debuts New Premium PC Portfolio Taking On Microsoft's Surface Models
Hewlett Packard Enterprise Reveals Powerful " The Machine" Computer Prototype, Although Key Technology Is Missing
HP Patches Keylogging Bug in Laptops
New HP Zbook Laptops Take On Apple's Mac Pro
HPE to Buy Nimble Storage for $1.09 billion
MWC: HP Announces The Pro x2 612 G2 Commercial Detachable
HP Recalls More Than 100,000 Laptop Batteries
CES 2017: HP Announces Redesigned Sprout Pro, 4K PCs and Curved Gaming Display
HP Announces The Rugged ProBook x360 11 Education Edition

Most Popular News
 
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2017 - All rights reserved -
Privacy policy - Contact Us .