Sunday, November 29, 2015
Submit your own News for
inclusion in our Site.
Click here...
Breaking News
NSA's Phone Surveillance Program Changes
Lenovo and Razer Partner to Make Gaming PCs
LG Display Makes Huge Investment in OLED Panels
Sony To Bring Remote Play Feature To PS4
MINIX NEO U1 Media Hub for Android Coming Next Week
Samsung Joins Audi’s Progressive SemiConductor Program
German ISPs May Block Music-sharing Sites: court
Study Says HTTPS Certificate and SSH Key Reuse Endangers Millions of Devices Worldwide
Active Discussions
How to back up a PS2 DL game
Copy a protected DVD?
roxio issues with xp pro
How to burn a backup copy of The Frozen Throne
Help make DVDInfoPro better with dvdinfomantis!!!
Copied dvd's say blank in computer only
menu making
Optiarc AD-7260S review
 Home > News > PC Parts > Intel t...
Last 7 Days News : SU MO TU WE TH FR SA All News

Monday, August 30, 2004
Intel to throttle power by enhancing silicon

Intel will try to further cut power consumption in its next generation of chips by using improved strained silicon, along with transistors that block power to other circuits, and other added features.

The Santa Clara, Calif.-based PC maker will incorporate a number of changes in its 65-nanometer manufacturing process, which will begin in 2005, said Mark Bohr, an Intel senior fellow and director of processor architecture and integration. Experimental SRAM chips have already been produced on the process.

Depending on the goals of the chip designer, circuits made on the 65-nanometer process can boost performance or cut power consumption or do both, but Intel is putting a definite accent on energy conservation. (65-nanometer refers to the average size of features of a chip. A nanometer is a billionth of a meter.)

The enhanced version of strained silicon--a technology that first appeared in Intel's 90-nanometer chips--can increase performance by 30 percent compared with nonstrained chips or provide a 4x improvement in inadvertent electricity leakage.

"With strained silicon, Intel is at least a generation ahead," Bohr said. "The enhanced strained silicon can be used to enhance drive current or reduce leakage."

Competitors IBM and Advanced Micro Devices have also begun to include strained silicon in chips.

Shrinking transistors and transistor components is at the heart of Moore's Law, which postulates that the number of transistors on a chip doubles every two years. Smaller transistors generally are faster (electrons have to cover less ground) and can result in smaller, cheaper, better and more energy-efficient chips. Ten million transistors in the test SRAM chips could fit on the tip of a ballpoint pen.

Following Moore's Law rigorously over the last 30 years, however, has resulted in extremely dense chips that are difficult to design, expensive to produce, tough to release on schedule and that exude as much heat, proportionally, as a rocket nozzle.

"As we scale dimensions, things get tougher," Bohr said.

Other alternations in the 65-nanometer generation will come in the oxide gate, a thin layer that helps control the flow of electrons between a transistor's source and the drain, a key element in controlling whether a computer sees a piece of data as a "1" or a "0."

In 65-nanometer chips, the length of gate oxide will get shorter, which will improve performance, but the gate oxide will retain its thickness. Typically, the oxide gets thinner in manufacturing transitions. By keeping the thickness the same, capacitance (a function of how much energy gets stored in a given material) goes down by 20 percent, which consequently reduces the potential for leakage.

Chips made on this process will also include sleep transistors that shut off power to other blocks of transistors.

Bohr couldn't quantify the power consumption these sleep transistors will curb, but potentially it could be quite a bit in both active power consumption and leakage.

"It is a noticeable gain in leakage reduction," he said.

The first chips made on the 65-nanometer process will come out in late 2005, Bohr said, first in Oregon and subsequently in Arizona and Ireland. He added that the transition from 90-nanometer to 65-nanometer probably won't be as taxing as the shift from 130-nanometer to 90-nanometer, which involved more changes in the underlying silicon.

Nonetheless, history shows that transitions in manufacturing take longer than expected. Designers often opt for performance over power savings.

"They are giving their circuit designers a lot of tools to control power, but it remains to be seen how they will use these skills," said Nathan Brookwood, an analyst with Insight 64.

Manufacturing transitions are also expected to start occurring at three-year, rather than two-year, intervals as time goes on. Many expect the 45-nanometer transition slated for 2007 to be particularly difficult, as chipmakers will likely have to change the materials in the transistor gate and gate oxide. By 2021 or so, the shrinking of transistor elements under Moore's Law is expected to come to an end.

Bohr added that Intel will adapt 248- and 193-nanometer lithography tools to produce 65-nanometer chips. Lithography tools "draw" transistors on wafers by shining light onto masks, maps of a chip's circuitry that cost millions of dollars to produce. The shadow cast by the masks (reduced greatly in size by lenses) in turn causes photoresistant chemicals on the wafer to react and expose metal.

New generations of lithography tools often take years to come to market and can cost $15 million or more, so adapting old tools for the new chips reduces risk exposure.

Intel will further engage in "dry" lithography for 65-nanometer manufacturing. Some manufacturers are currently exploring the possibility of immersion lithography, in which the wafers are submerged in water. The water helps focus the laser beam, which in turn lets engineers draw smaller circuits.

Extreme Ultraviolet, or EUV, lithography, which uses light with a much smaller wavelength, will start to replace 193-nanometer equipment toward the end of the decade.

One thing Intel's 65-nanometer chips won't contain is Silicon-on-Insulator, or SOI, an additional layer that advocates say cuts leakage power. In the early part of the decade, Intel experimented with adding what it called Ultra Thin SOI into its chips.

Now that notion has been scrapped, and Intel believes the power savings that Ultra Thin SOI would have brought will be accomplished through the tri-gate transistor, a future transistor that effectively triples the area inside a transistor for transporting electrons.


Ex-Antiterrorism Czar Offers Cybersecurity Tips        All News        California Localities Sue Microsoft
Elpida to Lift DDR2 DRAM Output Ratio to 50%-Plus by Early '05     PC Parts News      Week 34 - The week's news, reviews and press releases from around the web

Source Link Get RSS feed Easy Print E-Mail this Message

Related News
Intel Optane Memory Products Coming Next Year
Intel Advances High Performance Computing System Designs
Intel Expands The Xeon processor D-1500 Product Family And Unveils New Ethernet Controllers
Google Open Sources TensorFlow Machine Learning System
Intel Unveils New IoT Platform
Facebook Reports Progress In Artificial Intelligence Research
Intel Introduces Smart Tiny House Concept For IoT Connected Devices
Intel To Invest In Non-Volatile Memory
Intel Xeon Processor E3-1200 v5 Family Powers New Entry-level Workstations
Intel-Powered Arduino 101 Board Coming Next Year
Intel Reports Flat Revenue Despite Low PC Sales
New Firmware For Intel 750 Series SSD MAkes Your PC Booy Up Faster

Most Popular News
Home | News | All News | Reviews | Articles | Guides | Download | Expert Area | Forum | Site Info
Site best viewed at 1024x768+ - CDRINFO.COM 1998-2015 - All rights reserved -
Privacy policy - Contact Us .